Advertisement
Artificial Intelligence, Informatics & Imaging Physics| Volume 97, P55-61, May 2023

Download started.

Ok

Natural language processing in radiology: Clinical applications and future directions

      Highlights

      • Natural language processing is a wide range of techniques that allows computers to interact with human text. It has been increasingly utilized in the medical field with increased reliance on electronic health records.
      • NLP is particularly suited to benefit the field of radiology due to the field's reliance on written communication of findings through the radiology report.
      • Increased imaging volume will continue to necessitate the incorporation of NLP based applications to improve workflow in radiology.
      • Changes to the field such as a push toward standardized reporting can optimize the data that is available to efficiently develop these applications.

      Abstract

      Natural language processing (NLP) is a wide range of techniques that allows computers to interact with human text. Applications of NLP in everyday life include language translation aids, chat bots, and text prediction. It has been increasingly utilized in the medical field with increased reliance on electronic health records. As findings in radiology are primarily communicated via text, the field is particularly suited to benefit from NLP based applications. Furthermore, rapidly increasing imaging volume will continue to increase burden on clinicians, emphasizing the need for improvements in workflow. In this article, we highlight the numerous non-clinical, provider focused, and patient focused applications of NLP in radiology. We also comment on challenges associated with development and incorporation of NLP based applications in radiology as well as potential future directions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cambria E.
        • White B.
        Jumping NLP curves: a review of natural language processing research.
        IEEE Comput Intell Mag. 2014; 9: 48-57
        • Wang J.
        • Deng H.
        • Liu B.
        • Hu A.
        • Liang J.
        • Fan L.
        • Zheng X.
        • Wang T.
        • Lei J.
        Systematic evaluation of research Progress on natural language processing in medicine over the past 20 years: bibliometric study on PubMed.
        J Med Internet Res. 2020; 22e16816
        • Locke S.
        • Bashall A.
        • Al-Adely S.
        • Moore J.
        • Wilson A.
        • Kitchen G.B.
        Natural language processing in medicine: a review.
        Trends Anaesth Crit Care. 2021; 38: 4-9
        • van Buchem M.M.
        • Boosman H.
        • Bauer M.P.
        • Kant I.M.J.
        • Cammel S.A.
        • Steyerberg E.W.
        The digital scribe in clinical practice: a scoping review and research agenda.
        npj Digit Med. 2021; 4: 57
        • VolppKevin G.
        Asked and answered: building a chatbot to address covid-19-related concerns.
        in: NEJM Catalyst Innovations in Care Delivery. 2020
        • Smith-Bindman R.
        • Kwan M.L.
        • Marlow E.C.
        • Theis M.K.
        • Bolch W.
        • Cheng S.Y.
        • Bowles E.J.A.
        • Duncan J.R.
        • Greenlee R.T.
        • Kushi L.H.
        • Pole J.D.
        • Rahm A.K.
        • Stout N.K.
        • Weinmann S.
        • Miglioretti D.L.
        Trends in use of medical imaging in US health care systems and in Ontario, Canada, 2000–2016.
        JAMA. 2019; 322: 843-856
        • Berlin L.
        Pitfalls of the vague radiology report.
        Am J Roentgenol. 2000; 174: 1511-1518
        • Wallis A.
        • McCoubrie P.
        The radiology report — are we getting the message across?.
        Clin Radiol. 2011; 66: 1015-1022
        • Mehan W.A.
        • Brink J.A.
        • Hirsch J.A.
        21st century cures act: patient-facing implications of information blocking.
        J Am Coll Radiol. 2021; 18: 1012-1016
        • Gunn A.J.
        • Gilcrease-Garcia B.
        • Mangano M.D.
        • Sahani D.V.
        • Boland G.W.
        • Choy G.
        JOURNAL CLUB: structured feedback from patients on actual radiology reports: a novel approach to improve reporting practices.
        AJR Am J Roentgenol. 2017; 208: 1262-1270
        • Mabotuwana T.
        • Hombal V.
        • Dalal S.
        • Hall C.S.
        • Gunn M.
        Determining adherence to follow-up imaging recommendations.
        J Am Coll Radiol. 2018; 15: 422-428
        • Martin-Sanchez F.
        • Verspoor K.
        Big data in medicine is driving big changes.
        Yearb Med Inform. 2014; 23: 14-20
        • Floyd J.S.
        • Heckbert S.R.
        • Weiss N.S.
        • Carrell D.S.
        • Psaty B.M.
        Use of administrative data to estimate the incidence of statin-related rhabdomyolysis.
        JAMA. 2012; 307: 1580-1582
        • Sanders T.L.
        • Pareek A.
        • Desai V.S.
        • Hewett T.E.
        • Levy B.A.
        • Stuart M.J.
        • Dahm D.L.
        • Krych A.J.
        Low accuracy of diagnostic codes to identify anterior cruciate ligament tear in orthopaedic database research.
        Am J Sports Med. 2018; 46: 2894-2898
        • Kimia A.A.
        • Savova G.
        • Landschaft A.
        • Harper M.B.
        An introduction to natural language processing: how you can get more from those electronic notes you are generating.
        Pediatr Emerg Care. 2015; 31: 536-541
        • Garla V.N.
        • Brandt C.
        Ontology-guided feature engineering for clinical text classification.
        J Biomed Inform. 2012; 45: 992-998
        • Pruneski J.A.
        • Pareek A.
        • Kunze K.N.
        • Martin R.K.
        • Karlsson J.
        • Oeding J.F.
        • Kiapour A.M.
        • Nwachukwu B.U.
        • Williams R.J.
        • 3rd
        Supervised machine learning and associated algorithms: applications in orthopedic surgery.
        Knee Surg Sports Traumatol Arthrosc. 2022;
        • Pruneski J.A.
        • Pareek A.
        • Nwachukwu B.U.
        • Martin R.K.
        • Kelly B.T.
        • Karlsson J.
        • Pearle A.D.
        • Kiapour A.M.
        • Williams R.J.
        Natural language processing: using artificial intelligence to understand human language in orthopedics.
        Knee Surg Sports Traumatol Arthrosc. 2022;
        • Yamashita R.
        • Bird K.
        • Cheung P.Y.
        • Decker J.H.
        • Flory M.N.
        • Goff D.
        • Morimoto L.N.
        • Shon A.
        • Wentland A.L.
        • Rubin D.L.
        • Desser T.S.
        Automated identification and measurement extraction of pancreatic cystic lesions from free-text radiology reports using natural language processing.
        Radiol Artif Intell. 2022; 4e210092
        • Wu X.
        • Zhao Y.
        • Radev D.
        • Malhotra A.
        Identification of patients with carotid stenosis using natural language processing.
        Eur Radiol. 2020; 30: 4125-4133
        • Elkin P.L.
        • Froehling D.
        • Wahner-Roedler D.
        • Trusko B.
        • Welsh G.
        • Ma H.
        • Asatryan A.X.
        • Tokars J.I.
        • Rosenbloom S.T.
        • Brown S.H.
        NLP-based identification of pneumonia cases from free-text radiological reports.
        in: AMIA Annual Symposium Proceedings. American Medical Informatics Association, 2008: 172
        • Dublin S.
        • Baldwin E.
        • Walker R.L.
        • Christensen L.M.
        • Haug P.J.
        • Jackson M.L.
        • Nelson J.C.
        • Ferraro J.
        • Carrell D.
        • Chapman W.W.
        Natural language processing to identify pneumonia from radiology reports.
        Pharmacoepidemiol Drug Saf. 2013; 22: 834-841
        • Mendonça E.A.
        • Haas J.
        • Shagina L.
        • Larson E.
        • Friedman C.
        Extracting information on pneumonia in infants using natural language processing of radiology reports.
        J Biomed Inform. 2005; 38: 314-321
        • Gao H.
        • Bowles E.J.A.
        • Carrell D.
        • Buist D.S.
        Using natural language processing to extract mammographic findings.
        J Biomed Inform. 2015; 54: 77-84
        • Sohn S.
        • Ye Z.
        • Liu H.
        • Chute C.G.
        • Kullo I.J.
        Identifying abdominal aortic aneurysm cases and controls using natural language processing of radiology reports.
        in: AMIA Summits on Translational Science Proceedings. 2013. 2013: 249
        • Wen A.
        • Fu S.
        • Moon S.
        • El Wazir M.
        • Rosenbaum A.
        • Kaggal V.C.
        • Liu S.
        • Sohn S.
        • Liu H.
        • Fan J.
        Desiderata for delivering NLP to accelerate healthcare AI advancement and a Mayo Clinic NLP-as-a-service implementation.
        NPJ Digit Med. 2019; 2: 130
        • Ong C.J.
        • Orfanoudaki A.
        • Zhang R.
        • Caprasse F.P.M.
        • Hutch M.
        • Ma L.
        • Fard D.
        • Balogun O.
        • Miller M.I.
        • Minnig M.
        Machine learning and natural language processing methods to identify ischemic stroke, acuity and location from radiology reports.
        PLoS One. 2020; 15e0234908
        • Zheng C.
        • Huang B.Z.
        • Agazaryan A.A.
        • Creekmur B.
        • Osuj T.A.
        • Gould M.K.
        Natural language processing to identify pulmonary nodules and extract nodule characteristics from radiology reports.
        Chest. 2021; 160: 1902-1914
        • Cochon L.R.
        • Kapoor N.
        • Carrodeguas E.
        • Ip I.K.
        • Lacson R.
        • Boland G.
        • Khorasani R.
        Variation in follow-up imaging recommendations in radiology reports: patient, modality, and radiologist predictors.
        Radiology. 2019; 291: 700-707
        • Carrodeguas E.
        • Lacson R.
        • Swanson W.
        • Khorasani R.
        Use of machine learning to identify follow-up recommendations in radiology reports.
        J Am Coll Radiol. 2019; 16: 336-343
        • Lou R.
        • Lalevic D.
        • Chambers C.
        • Zafar H.M.
        • Cook T.S.
        Automated detection of radiology reports that require follow-up imaging using natural language processing feature engineering and machine learning classification.
        J Digit Imaging. 2020; 33: 131-136
        • Yetisgen-Yildiz M.
        • Gunn M.L.
        • Xia F.
        • Payne T.H.
        A text processing pipeline to extract recommendations from radiology reports.
        J Biomed Inform. 2013; 46: 354-362
        • Dutta S.
        • Long W.J.
        • Brown D.F.
        • Reisner A.T.
        Automated detection using natural language processing of radiologists recommendations for additional imaging of incidental findings.
        Ann Emerg Med. 2013; 62: 162-169
        • Ip I.K.
        • Mortele K.J.
        • Prevedello L.M.
        • Khorasani R.
        Focal cystic pancreatic lesions: assessing variation in radiologists' management recommendations.
        Radiology. 2011; 259: 136-141
        • Lacson R.
        • Prevedello L.M.
        • Andriole K.P.
        • Gill R.
        • Lenoci-Edwards J.
        • Roy C.
        • Gandhi T.K.
        • Khorasani R.
        Factors associated with radiologists' adherence to Fleischner Society guidelines for management of pulmonary nodules.
        J Am Coll Radiol. 2012; 9: 468-473
        • Short R.G.
        • Dondlinger S.
        • Wildman-Tobriner B.
        Management of incidental thyroid nodules on chest CT: using natural language processing to assess white paper adherence and track patient outcomes.
        Acad Radiol. 2022; 29: e18-e24
        • Oliveira L.
        • Tellis R.
        • Qian Y.
        • Trovato K.
        • Mankovich G.
        Follow-up recommendation detection on radiology reports with incidental pulmonary nodules.
        in: MEDINFO 2015: eHealth-enabled Health. IOS Press, 2015: 1028
        • Qenam B.
        • Kim T.Y.
        • Carroll M.J.
        • Hogarth M.
        Text simplification using consumer health vocabulary to generate patient-centered radiology reporting: translation and evaluation.
        J Med Internet Res. 2017; 19e8536
        • Ramadier L.
        • Lafourcade M.
        In radiological text simplification using a general knowledge base.
        in: International Conference on Computational Linguistics and Intelligent Text Processing. Springer, 2017: 617-627
        • Voll K.
        • Atkins S.
        • Forster B.
        Improving the utility of speech recognition through error detection.
        J Digit Imaging. 2008; 21: 371-377
        • Fiszman M.
        • Haug P.J.
        • Frederick P.R.
        Automatic extraction of PIOPED interpretations from ventilation/perfusion lung scan reports.
        in: Proceedings of the AMIA Symposium. American Medical Informatics Association, 1998: 860
        • Hu S.
        • Horng S.
        • Berkowitz S.J.
        • Liao R.
        • Krishnan R.G.
        • Li-wei H.L.
        • Mark R.G.
        Characterizing the Progression of Pulmonary Edema Severity: Can Pairwise Comparisons in Radiology Reports Help?.
        medRxiv, 2022
        • Cheng L.T.
        • Zheng J.
        • Savova G.K.
        • Erickson B.J.
        Discerning tumor status from unstructured MRI reports—completeness of information in existing reports and utility of automated natural language processing.
        J Digit Imaging. 2010; 23: 119-132
        • Solti I.
        • Cooke C.R.
        • Xia F.
        • Wurfel M.M.
        Automated classification of radiology reports for acute lung injury: comparison of keyword and machine learning based natural language processing approaches.
        in: 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop. IEEE, 2009: 314-319
        • Yu S.
        • Kumamaru K.K.
        • George E.
        • Dunne R.M.
        • Bedayat A.
        • Neykov M.
        • Hunsaker A.R.
        • Dill K.E.
        • Cai T.
        • Rybicki F.J.
        Classification of CT pulmonary angiography reports by presence, chronicity, and location of pulmonary embolism with natural language processing.
        J Biomed Inform. 2014; 52: 386-393
        • Gershanik E.F.
        • Lacson R.
        • Khorasani R.
        Critical finding capture in the impression section of radiology reports.
        in: AMIA Annual Symposium Proceedings. American Medical Informatics Association, 2011: 465
        • Solomon M.D.
        • Tabada G.
        • Allen A.
        • Sung S.H.
        • Go A.S.
        Large-scale identification of aortic stenosis and its severity using natural language processing on electronic health records.
        Cardiovasc Digit Health J. 2021; 2: 156-163
        • Kulshrestha S.
        • Dligach D.
        • Joyce C.
        • Baker M.S.
        • Gonzalez R.
        • O'Rourke A.P.
        • Glazer J.M.
        • Stey A.
        • Kruser J.M.
        • Churpek M.M.
        Prediction of severe chest injury using natural language processing from the electronic health record.
        Injury. 2021; 52: 205-212
        • Kalra A.
        • Chakraborty A.
        • Fine B.
        • Reicher J.
        Machine learning for automation of radiology protocols for quality and efficiency improvement.
        J Am Coll Radiol. 2020; 17: 1149-1158
        • Lee Y.H.
        Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks.
        J Digit Imaging. 2018; 31: 604-610
        • Brown A.D.
        • Marotta T.R.
        A natural language processing-based model to automate MRI brain protocol selection and prioritization.
        Acad Radiol. 2017; 24: 160-166
        • Roberts K.
        • Rink B.
        • Harabagiu S.M.
        • Scheuermann R.H.
        • Toomay S.
        • Browning T.
        • Bosler T.
        • Peshock R.
        A machine learning approach for identifying anatomical locations of actionable findings in radiology reports.
        in: AMIA Annual Symposium Proceedings. American Medical Informatics Association, 2012: 779
        • Sevenster M.
        • Van Ommering R.
        • Qian Y.
        Automatically correlating clinical findings and body locations in radiology reports using MedLEE.
        J Digit Imaging. 2012; 25: 240-249
        • Goff D.J.
        • Loehfelm T.W.
        Automated radiology report summarization using an open-source natural language processing pipeline.
        J Digit Imaging. 2018; 31: 185-192
        • Hu J.
        • Li J.
        • Chen Z.
        • Shen Y.
        • Song Y.
        • Wan X.
        • Chang T.-H.
        Word Graph Guided Summarization for Radiology Findings.
        arXiv, 2021 (preprint arXiv:2112.09925)
        • Fiszman M.
        • Chapman W.W.
        • Aronsky D.
        • Evans R.S.
        • Haug P.J.
        Automatic detection of acute bacterial pneumonia from chest X-ray reports.
        J Am Med Inform Assoc. 2000; 7: 593-604
        • Duszak Jr., R.
        • Nossal Jr., M.
        • Schofield Jr., L.
        • Picus Jr., D.
        Physician documentation deficiencies in abdominal ultrasound reports: frequency, characteristics, and financial impact.
        Journal of the American College of Radiology. 2012; 9: 403-408
        • Kim J.S.
        • Vivas A.
        • Arvind V.
        • Lombardi J.
        • Reidler J.
        • Zuckerman S.L.
        • Lee N.J.
        • Vulapalli M.
        • Geng E.A.
        • Cho B.H.
        • Morizane K.
        • Cho S.K.
        • Lehman R.A.
        • Lenke L.G.
        • Riew K.D.
        Can natural language processing and artificial intelligence automate the generation of billing codes from operative note dictations?.
        Global Spine Journal. 2022; (21925682211062831)
        • Amarouche I.A.
        • Ahmed Zaid D.
        • Kenaza T.
        Gadepally V. Mattson T. Stonebraker M. Wang F. Luo G. Teodoro G. Implementation of a Medical Coding Support System by Combining Approaches: NLP and Machine Learning, Heterogeneous Data Management, Polystores, and Analytics for Healthcare, Cham. Springer International Publishing, Cham2019: 133-147
        • Aronson A.R.
        • Bodenreider O.
        • Demner-Fushman D.
        • Fung K.W.
        • Lee V.K.
        • Mork J.G.
        • Névéol A.
        • Peters L.
        • Rogers W.J.
        In From indexing the biomedical literature to coding clinical text: experience with MTI and machine learning approaches.
        in: Biological, Translational, and Clinical Language Processing. 2007: 105-112
        • Farkas R.
        • Szarvas G.
        Automatic construction of rule-based ICD-9-CM coding systems.
        in: BMC Bioinformatics. Springer, 2008: 1-9
        • Goldstein I.
        • Arzrumtsyan A.
        • Uzuner O.
        Three approaches to automatic assignment of ICD-9-CM codes to radiology reports.
        in: Annual Symposium Proceedings. AMIA Symposium 2007, 2007: 279-283
        • Denck J.
        • Landschütz W.
        • Nairz K.
        • Heverhagen J.T.
        • Maier A.
        • Rothgang E.
        Automated billing code retrieval from MRI scanner log data.
        J Digit Imaging. 2019; 32: 1103-1111
        • Friedman C.
        • Hripcsak G.
        • DuMouchel W.
        • Johnson S.B.
        • Clayton P.D.
        Natural language processing in an operational clinical information system.
        Nat Lang Eng. 1995; 1: 83-108
        • Yamashita R.
        • Bird K.
        • Cheung P.Y.-C.
        • Decker J.H.
        • Flory M.N.
        • Goff D.
        • Morimoto L.N.
        • Shon A.
        • Wentland A.L.
        • Rubin D.L.
        Automated identification and measurement extraction of pancreatic cystic lesions from free-text radiology reports using natural language processing.
        Radiology: Artificial Intelligence. 2021; e210092
        • Devlin J.
        • Chang M.-W.
        • Lee K.
        • Toutanova K.
        Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding.
        arXiv, 2018 (preprint arXiv:1810.04805)
        • Zhu Q.
        • Luo J.
        Generative pre-trained transformer for design concept generation: an exploration.
        in: Proceedings of the Design Society. 2. 2022: 1825-1834
        • Zhang Y.
        • Ding D.Y.
        • Qian T.
        • Manning C.D.
        • Langlotz C.
        Learning to Summarize Radiology Findings.
        ArXiv, 2018 (abs/1809.04698)
        • Yan A.
        • McAuley J.
        • Lu X.
        • Du J.
        • Chang E.Y.
        • Gentili A.
        • Hsu C.-N.
        RadBERT: adapting transformer-based language models to radiology.
        RadiologyArtificial Intelligence. 2022; 4e210258
        • Chen L.
        • Shah R.
        • Link T.
        • Bucknor M.
        • Majumdar S.
        • Pedoia V.
        Bert model fine-tuning for text classification in knee OA radiology reports.
        Osteoarthr Cartil. 2020; 28: S315-S316
        • Liu G.
        • Liao Y.
        • Wang F.
        • Zhang B.
        • Zhang L.
        • Liang X.
        • Wan X.
        • Li S.
        • Li Z.
        • Zhang S.
        • Cui S.
        Medical-VLBERT: medical visual language BERT for COVID-19 CT report generation with alternate learning.
        IEEE Trans Neural Netw Learn Syst. 2021; 32: 3786-3797
        • Kaur N.
        • Mittal A.
        RadioBERT: a deep learning-based system for medical report generation from chest X-ray images using contextual embeddings.
        J Biomed Inform. 2022; 135104220
        • Bosmans J.M.
        • Weyler J.J.
        • De Schepper A.M.
        • Parizel P.M.
        The radiology report as seen by radiologists and referring clinicians: results of the COVER and ROVER surveys.
        Radiology. 2011; 259: 184-195
        • Morgan T.A.
        • Helibrun M.E.
        • Charles E.
        • Kahn J.
        Reporting Initiative of the Radiological Society of North America: progress and new directions.
        Radiology. 2014; 273: 642-645
        • Pysarenko K.
        • Recht M.
        • Kim D.
        Structured reporting: a tool to improve reimbursement.
        J Am Coll Radiol. 2017; 14: 662-664
        • Huesch M.D.
        • Cherian R.
        • Labib S.
        • Mahraj R.
        Evaluating report text variation and informativeness: natural language processing of CT chest imaging for pulmonary embolism.
        J Am Coll Radiol. 2018; 15: 554-562
        • Alfarghaly O.
        • Khaled R.
        • Elkorany A.
        • Helal M.
        • Fahmy A.
        Automated radiology report generation using conditioned transformers.
        in: Informatics in Medicine Unlocked. 24. 2021