Advertisement
Body Imaging| Volume 97, P1-6, May 2023

Download started.

Ok

Computed tomography of hyper-attenuated liver: Pictorial essay

Published:February 22, 2023DOI:https://doi.org/10.1016/j.clinimag.2023.02.012

      Highlights

      • Hyper-attenuated liver is best diagnosed by non-enhanced CT.
      • It appears as diffusely increased liver density of over 70 HU.
      • It indicates deposition of radiopaque elements in the liver parenchyma.
      • The most common cause of it is iodine from amiodarone therapy.
      • Various other etiologies of this condition are presented.

      Abstract

      Demonstration of a very dense or hyper-attenuated liver on the pre-contrast CT images of the abdomen can be an unexpected finding. It may present as a diagnostic challenge if the underlying cause of it is not apparent from the provided clinical history. There are about 12 different pathologic conditions that are associated with deposition of radiopaque elements within the hepatic parenchyma, resulting in diffuse or multi-lobar hyperdense appearance of the liver on abdominal radiographs and CT. Most of them are drug-induced or iatrogenic in nature, while others are the sequelae of genetic disorders like thalassemia, Wilson's disease, and primary hemochromatosis. This pictorial essay will present the CT appearance and etiology of hyper-attenuated liver in various clinical entities.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kulkarni N.
        • Fung A.
        • Kambadakone A.R.
        • Yeh B.M.
        CT techniques, protocols, advancements, and future directions in liver diseases.
        Magn Reson Imaging Clin N Am. 2021; 29: 305-320
        • Boll D.T.
        • Merkle E.M.
        Diffuse liver disease: strategies for hepatic CT and MR imaging.
        Radiographics. 2009; 29: 1591-1614
        • Hahn L.
        • Reeder S.B.
        • Munoz del Rio A.
        • Pickhardt J.P.
        Longitudinal changes in liver fat content in asymptomatic adults: hepatic attenuation on unenhanced CT as an imaging biomarker for steatosis.
        AJR. 2015; 205: 1167-1172
        • Costa D.M.C.
        • Salvadori P.S.
        • Monjardim R.D.F.
        • et al.
        When the non-contrast-enhanced phase is unnecessary in abdominal computed tomography scans? A retrospective analysis of 244 cases.
        Radiol Bras. 2013; 46 (10.1590)
        • Virarkar M.K.
        • Vulasala S.S.R.
        • Gupta A.V.
        • et al.
        Virtual non-contrast imaging in the abdomen and the pelvis: an overview.
        Semin Ultrasound CT MRI. 2022; 43: 293-310
        • Vassalo P.
        • Trohman R.G.
        Prescribing amiodarone: an evidence-based review of clinical indications.
        JAMA. 2007; 298: 1312-1322
      1. Amiodarone. Drug usage statistics, United States, 2013-2020.
        in: ClinCalc DrugStats Database. 2022
        • Biancatelli R.M.L.C.
        • Congedo V.
        • Calvosa L.
        • et al.
        Adverse reactions of amiodarone.
        J Geriatr Cardiol. 2019; 16: 552-566
        • Lv H.J.
        • Zhao H.W.
        Amiodarone-induced hepatotoxicity- quantitative measurement of iodine density in the liver using dual-energy computed tomography: three case reports.
        World J Clin Cases. 2020; 8: 4958-4965
        • Kattamis A.
        • Forni G.L.
        • Aydinok Y.
        • Viprakasit V.
        Changing patterns in the epidemiology of beta-thalassemia.
        Eur J Haematol. 2020; 105: 692-703
        • Sayani F.A.
        • Kwiatkowski J.L.
        Increasing prevalence of thalassemia in America: implications for primary care.
        Ann Med. 2015; 47: 592-604
        • Gosein M.
        • Maharaj P.
        • Bakaransingh P.
        • et al.
        Imaging features of thalassemia.
        Br J Radiol. 2019; 9220180658
        • Merle U.
        • Schaefer M.
        • Ferenci P.
        • Stremmel W.
        Clinical presentation, diagnosis, and long-term outcome of Wilson's disease: a cohort study.
        Gut. 2007; 56: 115-120
        • Hedera P.
        Update on the clinical management of Wilson's disease.
        Appl Clin Genet. 2017; 10: 9-19
        • Akhan O.
        • Akpinar E.
        • Karcaaltincaba M.
        • et al.
        Imaging findings of liver involvement of Wilson's disease.
        Eur J Radiol. 2009; 69: 147-155
        • Li W.
        • Zhao X.
        • Zhan Q.
        • et al.
        Unique CT imaging findings of liver in Wilson's disease.
        Abdom Imaging. 2011; 36: 69-73
        • Jafari S.H.
        • Haseli S.
        • Kaffashan S.
        • et al.
        Assessment of the hallmarks of Wilson disease in CT scan imaging.
        J Med Imaging Rad Sci. 2020; 51: 145-153
        • Tavill A.S.
        • Adams P.C.
        A diagnostic approach to hemochromatosis.
        Can J Gastroenterol. 2006; 20: 535-540
        • Kowdley K.V.
        • Brown K.E.
        • Ahn J.
        • Sundaram V.
        ACG clinical guideline: hereditary hemochromatosis.
        Am J Gastroenterol. 2019; 114: 1202-1218
        • Franca M.
        • Carvalho J.G.
        MR imaging assessment and quantification of liver iron.
        Abdom Radiol. 2020; 45: 3400-3412
        • Shander A.
        • Cappellini M.D.
        • Goodnough L.T.
        Iron overload and toxicity: the hidden risk of multiple blood transfusions.
        Vox Sang. 2009; 97: 185-197
        • Wood J.C.
        Diagnosis and management of transfusion iron overload: the role of imaging.
        Am J Hematol. 2007; 82: 1132-1135
        • Fischer M.A.
        • Reiner C.S.
        • Raptis D.
        • et al.
        Quantification of liver iron content with CT-added value of dual-energy.
        Eur Radiol. 2011; 8: 1727-1732
        • Labranche R.
        • Gilbert G.
        • Cerny M.
        • et al.
        Liver iron quantification with MR imaging: a primer for radiologists.
        Radiographics. 2018; 38: 392-412
        • Takekawa S.
        • Ueda Y.
        • Hiramatsu Y.
        • et al.
        History note: tragedy of thorotrast.
        Jpn J Radiol. 2015; 33: 718-722
        • Levy D.W.
        • Rindsberg S.
        • Friedman A.C.
        • et al.
        Thorotrast-induced hepatosplenic neoplasia: CT identification.
        AJR. 1986; 146: 997-1004
        • Eisler R.
        Chrysotherapy: a synoptic review.
        Inflamm Res. 2003; 52: 487-501
        • Bendix G.
        • Bjelle A.
        A 10-year follow up of parenteral gold therapy in patients with rheumatoid arthritis.
        Ann Rheum Dis. 1996; 55: 169-176
        • De Maria M.
        • De Simone G.
        • Laconi A.
        • et al.
        Gold storage in the liver: appearance on CT scans.
        Radiology. 1986; 159: 355-356
        • Bartalena T.
        • Rinaldi M.F.
        Hyperdense spleen after prolonged gold therapy.
        JMAJCan Med Assoc J. 2010; 182: E 858
        • Cole L.E.
        • Ross R.D.
        • Tilley J.M.
        • et al.
        Gold nanoparticles as contrast agents in X-ray imaging and computed tomography.
        Nanomedicine. 2015; 10: 321-341
        • Sun I.C.
        • Eun D.K.
        • Na J.H.
        • et al.
        Heparin-coated gold nanoparticles for liver-specific CT imaging.
        ChemEur J. 2009; 15: 13341-13347
        • Sztandera K.
        • Gorzkiewicz M.
        • Klajnert-Maculewicz B.
        Gold nanoparticles in cancer treatment.
        Mol Pham. 2019; 16: 1-23
        • Kantor E.D.
        • Rehm C.D.
        • Du M.
        • et al.
        Trends in dietary supplement use among US adults from 1999–2012.
        JAMA. 2016; 316: 1464-1474
        • Navarro V.
        • Khan I.
        • Bjornsson E.
        • et al.
        Liver injury from herbal and dietary supplements.
        Hepatology. 2017; 65: 363-373
        • White J.S.
        • Skelly R.T.
        • Gardiner K.R.
        • et al.
        Intravasation of barium sulphate at barium enema examination.
        Br J Radiol. 2006; 79: e32-e35
        • Loo G.H.
        • Marzuki F.
        • Henry F.
        Rare, and lethal complication of barium intravasation.
        BJR Case Rep. 2018; 420180017
        • Steinman R.M.
        • Torres G.
        • Stoupis C.
        CT of abdominal barium intravasation.
        J Comput Assist Tomogr. 1994; 18: 149-151
        • Peart J.M.
        • Sim R.
        Lipiodol hysterosalpingogram: a modified HSG technique to minimize risks associated with lipiodol use.
        J Med Imaging Radiat Oncol. 2020; 64: 516-521
        • Jardinet T.
        • Van Veer H.
        • Nafteux P.
        • et al.
        Intranodal lymphangiography with high-dose ethiodized oil shows efficient results in patients with refractory, high-output postsurgical chylothorax: a retrospective study.
        AJR. 2021; 217: 433-438
        • Roest I.
        • Rosielle K.
        • Van Welie N.
        • et al.
        Safety of oil-based contrast medium for hysterosalpinography: a systematic review.
        ReprodBiomed Online. 2021; 42: 1119-1129
        • Letzen B.S.
        • Malpani R.
        • Miszczuk M.
        • et al.
        Lipiodol as an intra-procedural imaging biomarker for liver tumor response to transarterial chemoembolization: post-hoc analysis of a prospective clinical trial.
        Clin Imaging. 2021; 78: 194-200
        • De Baere T.
        • Arai Y.
        • Lencioni R.
        • et al.
        Treatment of liver tumors with lipiodol TACE: technical recommendations from experts' opinion.
        Cardiovasc Intervent Radiol. 2016; 39: 334-343
        • Erley C.M.
        • Bader B.D.
        • Berger E.D.
        • et al.
        Plasma clearance of iodine contrast media as a measure of glomerular filtration rate in critically ill patients.
        Crit Care Med. 2001; 29: 1544-1550
        • Chou S.H.
        • Wang Z.J.
        • Kuo J.
        • et al.
        Persistent renal enhancement after intra-arterial versus intravenous iodixanol administration.
        Eur J Radiol. 2011; 80: 378-386
        • Patnana M.
        • Menias C.O.
        • PickhardtClean P.J.
        • et al.
        Liver calcifications and calcified liver masses: pattern recognition approach on CT.
        AJR. 2018; 211: 76-86
        • Shibuya A.
        • Unuma T.
        • Sugimoto T.
        • et al.
        Diffuse hepatic calcification as a sequela to shock liver.
        Gastroenterology. 1985; 89: 196-201
        • Kerlin P.
        • Ash M.
        • Strong R.
        • Mitchell K.
        Diffuse hepatic calcification.
        Br J Radiol. 1988; 61: 1079-1080