Highlights
- •Approximately one quarter of the pediatric vascular access encounters over the last decade were performed by IR, with a slight increase (3.8%).
- •Regionally, IR-provided access was greatest in the Midwest (33.5%), compared with the Northeast (23.4%), the South (22.7%), and the West (17.1%).
- •There was, however, a decrease in IR-performed procedures by 5.9% in the Midwest and an increase in the remaining three regions.
- •IR-placed pediatric vascular access has slightly increased over the last decade without significant service-line transfer to other specialties.
Abstract
Purpose
To evaluate central venous access placement trends for radiology and non-radiology
services over the last decade.
Materials and methods
Children who had central venous access procedures included in a large administrative
database of 49 pediatric institutions in the United States between 2010 and 2020 were
included. Patient demographics and patient specific factors were compared between
groups. The percentage of procedures performed by interventional radiology (IR) and
non-radiology services were compared over time and by region.
Results
A total of 483,181 vascular access encounters were recorded (45.3% female; median
age 2 years (IQR 0–11 years)). Approximately one quarter of vascular access encounters
were IR-led, with a slight increase of 3.8% between 2010 and 2020. Children who underwent
IR-placed vascular access were older (median age of 4 years compared to 1 year in
non-radiology encounters). Interventional radiology-placed access was greatest in
the Midwest (33.5%) with a decrease of 5.9% over the study period; in the other three
regions, IR-performed encounters increased. Patient comorbidities more prevalent in
the IR encounters were technology dependence (42.4% of all radiology encounters),
gastrointestinal (34.9%), respiratory (20.8%), and transplant (8.1%), while those
which were more prevalent in the non-radiology encounters were nephrology/urology
(21.4% of all non-radiology encounters), prematurity/neonatal (17.3%), and malignancy
(17.3%).
Conclusions
Interventional radiology-provided vascular access services have slightly increased
over the last decade without significant service-line transfer to other specialties.
Underlying comorbidities in IR-led vascular access encounters vary across institutions
based on referral patterns, possibly reflecting the adoption of ultrasound guidance
by other pediatric subspecialties.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Clinical ImagingAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- The Michigan appropriateness guide for intravenous catheters in pediatrics: miniMAGIC.Pediatrics. 2020; 145: S269-S284https://doi.org/10.1542/peds.2019-3474I
- Vascular access in hospitalized children.Pediatrics. 2020; 145: S298-S299https://doi.org/10.1542/peds.2019-3474P
- Vascular access for children needing procedures.Pediatrics. 2020; 145: S288-S289https://doi.org/10.1542/peds.2019-3474K
- The future of vascular access in children.Pediatrics. 2020; 145: S300-S301https://doi.org/10.1542/peds.2019-3474Q
- Vascular access in children.Cardiovasc Intervent Radiol. 2011; 34: 14-24https://doi.org/10.1007/s00270-010-9865-3
- Vascular access.Tech Vasc Interv Radiol. 2003; 6: 176-181https://doi.org/10.1053/j.tvir.2003.10.005
- Percutaneous placement of Hickman catheters: comparison of sonographically guided and blind techniques.Am J Roentgenol. 1990; 155: 1097-1099https://doi.org/10.2214/ajr.155.5.2120941
- International evidence-based recommendations on ultrasound-guided vascular access.Intensive Care Med. 2012; 38: 1105-1117https://doi.org/10.1007/s00134-012-2597-x
- Ultrasound for vascular access in pediatric patients.Paediatr Anaesth. 2012; 22: 1002-1007https://doi.org/10.1111/pan.12005
- Comparison of delayed complications of central venous catheters placed surgically or radiologically in pediatric oncology patients.J Pediatr Surg. 2003; 38: 788-792https://doi.org/10.1016/jpsu.2003.50168
- Tunneled central venous access catheter placement in the pediatric population: comparison of radiologic and surgical results.Radiology. 1994; 192: 265-268https://doi.org/10.1148/radiology.192.1.8208950
- Ultrasound first, second, and last for vascular access.J Ultrasound Med. 2014; 33: 1135-1142https://doi.org/10.7863/ultra.33.7.1135
- Pediatric vascular access.Pediatr Radiol. 2006; 36: 386-397https://doi.org/10.1007/s00247-006-0118-1
- Central venous access: evolving roles of radiology and other specialties nationally over two decades.J Am Coll Radiol. 2013; 10: 603-612https://doi.org/10.1016/j.jacr.2013.02.002
- Techniques in vascular and interventional radiology: pediatric central venous access.Tech Vasc Interv Radiol. 2010; 13: 250-257https://doi.org/10.1053/j.tvir.2010.04.003
- Ultrasound guidance improves safety and efficiency of central line placements.J Pediatr Surg. 2019; 54: 1675-1679https://doi.org/10.1016/j.jpedsurg.2018.08.039
- Systematic review: is real-time ultrasonic-guided central line placement by ED physicians more successful than the traditional landmark approach?.Emerg Med J. 2013; 30: 355-359https://doi.org/10.1136/emermed-2012-201230
- Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature.Crit Care Med. 1996; 24: 2053-2058https://doi.org/10.1097/00003246-199612000-00020
- Interventional radiology in infancy.Early Hum Dev. 2014; 90: 787-790https://doi.org/10.1016/j.earlhumdev.2014.08.017
- Recent trends in central venous catheter placement: a comparison of interventional radiology with other specialties.J Vasc Interv Radiol. 2001; 12: 1211-1214https://doi.org/10.1016/S1051-0443(07)61681-9
- Pediatric complex chronic conditions classification system version 2: updated for ICD-10 and complex medical technology dependence and transplantation.BMC Pediatr. 2014; 14: 199https://doi.org/10.1186/1471-2431-14-199
- Technology-dependency among patients discharged from a children’s hospital: a retrospective cohort study.BMC Pediatr. 2005; 5: 8https://doi.org/10.1186/1471-2431-5-8
- Effect of a vascular access team on central line-associated bloodstream infections in infants admitted to a neonatal intensive care unit: a systematic review.Int J Nurs Stud. 2015; 52: 1003-1010https://doi.org/10.1016/j.ijnurstu.2014.11.010
- A dedicated consultant-led vascular access team significantly reduces out-of-hours and emergency permanent central venous access insertions.J Pediatr Surg. 2010; 45: 419-421https://doi.org/10.1016/j.jpedsurg.2009.10.089
- Collaborative practice.: a multidisciplinary approach to vascular access in children.J Spec Pediatr Nurs. 2006; 11: 254-256https://doi.org/10.1111/j.1744-6155.2006.00078.x
Article info
Publication history
Published online: February 09, 2023
Accepted:
February 7,
2023
Received in revised form:
January 23,
2023
Received:
October 14,
2022
Identification
Copyright
© 2023 Published by Elsevier Inc.