Advertisement

CT radiomics for differentiating oncocytoma from renal cell carcinomas: Systematic review and meta-analysis

Published:November 17, 2022DOI:https://doi.org/10.1016/j.clinimag.2022.11.007

      Highlights

      • CT radiomics has a high degree of accuracy in distinguishing RCCs from renal oncocytomas (ROs), including chRCCs from ROs
      • Radiomics algorithms have the potential to improve diagnosis in scenarios that have traditionally been ambiguous
      • For this modality to be implemented in the clinical setting, standardization of image acquisition and segmentation protocols are warranted.

      Abstract

      Background

      Radiomics is a type of quantitative analysis that provides a more objective approach to detecting tumor subtypes using medical imaging. The goal of this paper is to conduct a comprehensive assessment of the literature on computed tomography (CT) radiomics for distinguishing renal cell carcinomas (RCCs) from oncocytoma.

      Methods

      From February 15th 2012 to 2022, we conducted a broad search of the current literature using the PubMed/MEDLINE, Google scholar, Cochrane Library, Embase, and Web of Science. A meta-analysis of radiomics studies concentrating on discriminating between oncocytoma and RCCs was performed, and the risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies method. The pooled sensitivity, specificity, and diagnostic odds ratio were evaluated via a random-effects model, which was applied for the meta-analysis. This study is registered with PROSPERO (CRD42022311575).

      Results

      After screening the search results, we identified 6 studies that utilized radiomics to distinguish oncocytoma from other renal tumors; there were a total of 1064 lesions in 1049 patients (288 oncocytoma lesions vs 776 RCCs lesions). The meta-analysis found substantial heterogeneity among the included studies, with pooled sensitivity and specificity of 0.818 [0.619–0.926] and 0.808 [0.537–0.938], for detecting different subtypes of RCCs (clear cell RCC, chromophobe RCC, and papillary RCC) from oncocytoma. Also, a pooled sensitivity and specificity of 0.83 [0.498–0.960] and 0.92 [0.825–0.965], respectively, was found in detecting oncocytoma from chromophobe RCC specifically.

      Conclusions

      According to this study, CT radiomics has a high degree of accuracy in distinguishing RCCs from RO, including chromophobe RCCs from RO. Radiomics algorithms have the potential to improve diagnosis in scenarios that have traditionally been ambiguous. However, in order for this modality to be implemented in the clinical setting, standardization of image acquisition and segmentation protocols as well as inter-institutional sharing of software is warranted.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. NA Howlader N. Krapcho M. Miller D. SEER Cancer Statistics Review. National Cancer Institute, 1975–2018
        • Kim J.H.
        • Li S.
        • Khandwala Y.
        • Chung K.J.
        • Park H.K.
        • Chung B.I.
        Association of Prevalence of benign pathologic findings after partial nephrectomy with preoperative imaging patterns in the United States from 2007 to 2014.
        JAMA Surg. 2019; 154: 225-231
        • Wu J.
        • Zhu Q.
        • Zhu W.
        • Chen W.
        • Wang S.
        Comparative study of CT appearances in renal oncocytoma and chromophobe renal cell carcinoma.
        Acta Radiol. 2016; 57: 500-506
        • Li Y.
        • Huang X.
        • Xia Y.
        • Long L.
        Value of radiomics in differential diagnosis of chromophobe renal cell carcinoma and renal oncocytoma.
        Abdom Radiol (NY). 2020; 45: 3193-3201
        • Asselin C.
        • Finelli A.
        • Breau R.H.
        • Mallick R.
        • Kapoor A.
        • Rendon R.A.
        • et al.
        Does renal tumor biopsies for small renal carcinoma increase the risk of upstaging on final surgery pathology report and the risk of recurrence?.
        Urol. Oncol. 2020; 38 (e9–e16): 798
        • Marconi L.
        • Dabestani S.
        • Lam T.B.
        • Hofmann F.
        • Stewart F.
        • Norrie J.
        • et al.
        Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy.
        Eur Urol. 2016; 69: 660-673
        • Herrera-Caceres J.O.
        • Finelli A.
        • Jewett M.A.S.
        Renal tumor biopsy: indicators, technique, safety, accuracy results, and impact on treatment decision management.
        World J Urol. 2019; 37: 437-443
        • Abrahams N.A.
        • Tamboli P.
        Oncocytic renal neoplasms: diagnostic considerations.
        Clin Lab Med. 2005; 25 (vi): 317-339
        • Patel H.D.
        • Nichols P.E.
        • Su Z.T.
        • Gupta M.
        • Cheaib J.G.
        • Allaf M.E.
        • et al.
        Renal mass biopsy is associated with reduction in surgery for early-stage kidney cancer.
        Urology. 2020; 135: 76-81
        • Neves J.B.
        • Withington J.
        • Fowler S.
        • Patki P.
        • Barod R.
        • Mumtaz F.
        • et al.
        Contemporary surgical management of renal oncocytoma: a nation's outcome.
        BJU Int. 2018; 121: 893-899
        • Rosenkrantz A.B.
        • Hindman N.
        • Fitzgerald E.F.
        • Niver B.E.
        • Melamed J.
        • Babb J.S.
        MRI features of renal oncocytoma and chromophobe renal cell carcinoma.
        AJR Am J Roentgenol. 2010; 195: W421-W427
        • Trevisani F.
        • Floris M.
        • Minnei R.
        • Cinque A.
        Renal oncocytoma: the diagnostic challenge to unmask the double of renal cancer.
        Int J Mol Sci. 2022; 23
        • Gillies R.J.
        • Kinahan P.E.
        • Hricak H.
        Radiomics: images are more than pictures, they are data.
        Radiology. 2016; 278: 563-577
        • Shu J.
        • Wen D.
        • Xi Y.
        • Xia Y.
        • Cai Z.
        • Xu W.
        • et al.
        Clear cell renal cell carcinoma: machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade.
        Eur J Radiol. 2019; 121108738
        • Sun X.
        • Liu L.
        • Xu K.
        • Li W.
        • Huo Z.
        • Liu H.
        • et al.
        Prediction of ISUP grading of clear cell renal cell carcinoma using support vector machine model based on CT images.
        Medicine (Baltimore). 2019; 98e15022
        • Yang G.
        • Gong A.
        • Nie P.
        • Yan L.
        • Miao W.
        • Zhao Y.
        • et al.
        Contrast-enhanced CT texture analysis for distinguishing fat-poor renal angiomyolipoma from chromophobe renal cell carcinoma.
        Mol Imaging. 2019; 18 (1536012119883161)
        • Zhang G.M.
        • Shi B.
        • Xue H.D.
        • Ganeshan B.
        • Sun H.
        • Jin Z.Y.
        Can quantitative CT texture analysis be used to differentiate subtypes of renal cell carcinoma?.
        Clin Radiol. 2019; 74: 287-294
        • Mühlbauer J.
        • Egen L.
        • Kowalewski K.-F.
        • Grilli M.
        • Walach M.T.
        • Westhoff N.
        • et al.
        Radiomics in renal cell carcinoma—a systematic review and meta-analysis.
        Cancers. 2021; 13
        • Schieda N.
        • Lim R.S.
        • McInnes M.D.F.
        • Thomassin I.
        • Renard-Penna R.
        • Tavolaro S.
        • et al.
        Characterization of small (<4cm) solid renal masses by computed tomography and magnetic resonance imaging: current evidence and further development.
        Diagn Interv Imaging. 2018; 99: 443-455
        • Whiting P.F.
        • Rutjes A.W.S.
        • Westwood M.E.
        • Mallett S.
        • Deeks J.J.
        • Reitsma J.B.
        • et al.
        QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.
        Ann Intern Med. 2011; 155: 529-536
        • Siegel R.L.M.K.
        • Jemal A.
        Cancer statistics.
        CA Cancer J Clin. 2020; 70: 7-30
        • Diaz de Leon A.
        • Pedrosa I.
        Imaging and screening of kidney cancer.
        Radiol Clin North Am. 2017; 55: 1235-1250
        • Moch H.
        • Cubilla A.L.
        • Humphrey P.A.
        • Reuter V.E.
        • Ulbright T.M.
        The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours.
        Eur Urol. 2016; 70: 93-105
        • Kuthi L.
        • Jenei A.
        • Hajdu A.
        • Németh I.
        • Varga Z.
        • Bajory Z.
        • et al.
        Prognostic factors for renal cell carcinoma subtypes diagnosed according to the 2016 WHO renal tumor classification: a study involving 928 patients.
        Pathol Oncol Res. 2017; 23: 689-698
        • Yang L.
        • Gao L.
        • Arefan D.
        • Tan Y.
        • Dan H.
        • Zhang J.
        A CT-based radiomics model for predicting renal capsule invasion in renal cell carcinoma.
        BMC Med Imaging. 2022; 22: 15
        • Richard P.O.
        • Jewett M.A.S.
        • Bhatt J.R.
        • Evans A.J.
        • Timilsina N.
        • Finelli A.
        Active surveillance for renal neoplasms with oncocytic features is safe.
        J Urol. 2016; 195: 581-587
        • Kawaguchi S.
        • Fernandes K.A.
        • Finelli A.
        • Robinette M.
        • Fleshner N.
        • Jewett M.A.
        Most renal oncocytomas appear to grow: observations of tumor kinetics with active surveillance.
        J Urol. 2011; 186: 1218-1222
        • McGillivray P.D.
        • Ueno D.
        • Pooli A.
        • Mendhiratta N.
        • Syed J.S.
        • Nguyen K.A.
        • et al.
        Distinguishing benign renal tumors with an oncocytic gene expression (ONEX) classifier.
        Eur Urol. 2021; 79: 107-111
        • Young J.R.
        • Margolis D.
        • Sauk S.
        • Pantuck A.J.
        • Sayre J.
        • Raman S.S.
        Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT.
        Radiology. 2013; 267: 444-453
        • Huang Y.Q.
        • Liang C.H.
        • He L.
        • Tian J.
        • Liang C.S.
        • Chen X.
        • et al.
        Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer.
        J Clin Oncol. 2016; 34: 2157-2164
        • Horvat N.
        • Veeraraghavan H.
        • Khan M.
        • Blazic I.
        • Zheng J.
        • Capanu M.
        • et al.
        MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy.
        Radiology. 2018; 287: 833-843
        • Zhang G.M.
        • Sun H.
        • Shi B.
        • Jin Z.Y.
        • Xue H.D.
        Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma.
        Abdom Radiol (NY). 2017; 42: 561-568
        • Seijo L.M.
        • Peled N.
        • Ajona D.
        • Boeri M.
        • Field J.K.
        • Sozzi G.
        • et al.
        Biomarkers in lung cancer screening: achievements, promises, and challenges.
        J Thorac Oncol. 2019; 14: 343-357
        • Feng Z.
        • Rong P.
        • Cao P.
        • Zhou Q.
        • Zhu W.
        • Yan Z.
        • et al.
        Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.
        Eur Radiol. 2018; 28: 1625-1633
        • Avanzo M.
        • Wei L.
        • Stancanello J.
        • Vallières M.
        • Rao A.
        • Morin O.
        • et al.
        Machine and deep learning methods for radiomics.
        Med Phys. 2020; 47: e185-e202
        • Millet I.
        • Curros F.
        • Serre I.
        • Taourel P.
        • Thuret R.
        Can renal biopsy accurately predict histological subtype and Fuhrman grade of renal cell carcinoma?.
        J Urol. 2012; 188: 1690-1694
        • Bai X.
        • Huang Q.
        • Zuo P.
        • Zhang X.
        • Yuan J.
        • Zhang X.
        • et al.
        MRI radiomics-based nomogram for individualised prediction of synchronous distant metastasis in patients with clear cell renal cell carcinoma.
        Eur Radiol. 2021; 31: 1029-1042
        • Nikpanah M.
        • Xu Z.
        • Jin D.
        A deep-learning based artificial intelligence (AI) approach for differentiation of clear cell renal cell carcinoma from oncocytoma on multi-phasic MRI.
        Clin. Imaging. 2021; 77: 291-298https://doi.org/10.1016/j.clinimag.2021.06.016
        • Baghdadi A.
        • Aldhaam N.A.
        • Elsayed A.S.
        • Hussein A.A.
        • Cavuoto L.A.
        • Kauffman E.
        • et al.
        Automated differentiation of benign renal oncocytoma and chromophobe renal cell carcinoma on computed tomography using deep learning.
        BJU Int. 2020; 125: 553-560
        • Zabihollahy F.
        • Schieda N.
        • Krishna S.
        • Ukwatta E.
        Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion.
        Eur Radiol. 2020; 30: 5183-5190
        • Yu H.
        • Scalera J.
        • Khalid M.
        • Touret A.-S.
        • Bloch N.
        • Li B.
        • et al.
        Texture analysis as a radiomic marker for differentiating renal tumors.
        Abdom Radiol. 2017; 42: 2470-2478
        • Li X.
        • Ma Q.
        • Nie P.
        • Zheng Y.
        • Dong C.
        • Xu W.
        A CT-based radiomics nomogram for differentiation of renal oncocytoma and chromophobe renal cell carcinoma with a central scar-matched study.
        Br J Radiol. 2022; 95: 20210534
        • Hayano K.
        • Tian F.
        • Kambadakone A.R.
        • Yoon S.S.
        • Duda D.G.
        • Ganeshan B.
        • et al.
        Texture analysis of non-contrast-enhanced computed tomography for assessing angiogenesis and survival of soft tissue sarcoma.
        J Comput Assist Tomogr. 2015; 39: 607-612
        • Hsieh J.J.
        • Purdue M.P.
        • Signoretti S.
        • Swanton C.
        • Albiges L.
        • Schmidinger M.
        • et al.
        Renal cell carcinoma.
        Nat Rev Dis Primers. 2017;; : 3
        • Kay F.U.
        • Pedrosa I.
        Imaging of solid renal masses.
        Radiol Clin North Am. 2017; 55: 243-258
        • Sasaguri K.
        • Takahashi N.
        • Gomez-Cardona D.
        • Leng S.
        • Schmit G.D.
        • Carter R.E.
        • et al.
        Small (< 4 cm) renal mass: Differentiation of oncocytoma from renal cell carcinoma on biphasic contrast-enhanced CT.
        Am J Roentgenol. 2015; 205: 999-1007
        • Galia M.
        • Albano D.
        • Bruno A.
        • Agrusa A.
        • Romano G.
        • Di Buono G.
        • et al.
        Imaging features of solid renal masses.
        Br J Radiol. 2017; 90: 20170077
        • Deng Y.
        • Soule E.
        • Cui E.
        • Samuel A.
        • Shah S.
        • Lall C.
        • et al.
        Usefulness of CT texture analysis in differentiating benign and malignant renal tumours.
        Clin Radiol. 2020; 75: 108-115
        • Choi J.H.
        • Kim J.W.
        • Lee J.Y.
        • Han W.K.
        • Rha K.H.
        • Choi Y.D.
        • et al.
        Comparison of computed tomography findings between renal oncocytomas and chromophobe renal cell carcinomas.
        Korean J Urol. 2015; 56: 695-702
        • Woo S.
        • Cho J.Y.
        • Kim S.H.
        • Kim S.Y.
        Comparison of segmental enhancement inversion on biphasic MDCT between small renal oncocytomas and chromophobe renal cell carcinomas.
        AJR Am J Roentgenol. 2013; 201: 598-604
        • Davidson A.J.
        • Hayes W.S.
        • Hartman D.S.
        • McCarthy W.F.
        • Davis C.J.
        Renal oncocytoma and carcinoma: failure of differentiation with CT.
        Radiology. 1993; 186: 693-696
        • Miles K.A.
        • Ganeshan B.
        • Hayball M.P.
        CT texture analysis using the filtration-histogram method: what do the measurements mean?.
        Cancer Imaging. 2013; 13: 400-406