Advertisement

The role of optimal cut-off diagnosis in 11C-methionine PET for differentiation of intracranial brain tumor from non-neoplastic lesions before treatment

      Highlights

      • The role of optimal cutoff for pretreatment 11C-METPET differentiation of intracranial brain tumors from non-neoplastic lesions is debatable.
      • Considering the high specificity using optimal cutoffs, 11C-METPET is useful for definitive diagnosis.
      • In positive cases, additional intrusive procedures such as biopsy may be undertaken based on 11C-METPET imaging.

      Abstract

      Purpose

      Amino acid positron emission tomography (PET) may provide additional information to computed tomography and magnetic resonance imaging for detecting the pretreatment diagnosis of intracranial lesions. The purpose of this study was to investigate the role of cutoff values of 11C-METPET, an amino acid PET tracer, in the differentiation of pretreatment brain tumors from non-neoplastic lesions.

      Methods

      This retrospective cohort study analyzed 101 pretreatment patients with a definitive diagnosis out of a total of 425 consecutive 11C-METPET imaging studies. The standardized uptake values (SUV) and the ratios of lesion to contralateral normal frontal-lobe gray matter uptake (L/N ratios) were measured. Cutoff values for the differential diagnosis of brain tumors from non-neoplastic lesions were determined using receiver operating characteristics curve (ROC) analysis.

      Results

      Based on the ROC analyses, the cutoffs were 3.33 for maximum SUV, 2.54 for mean SUV, 2.33 for peak SUV, 2.04 for Lmax/Nmean, and 2.23 for Lmax/Nmax. The sensitivity and specificity of these cutoffs were 69.2% and 82.6%, respectively, for maximum SUV, 64.1% and 91.3% for mean SUV, 69.2% and 91.3% for peak SUV, 70.5% and 91.3% for Lmax/Nmax and 75.6% and 82.6% for Lmax/Nmean.

      Conclusion

      In differentiating intracranial brain tumor from non-neoplastic lesion with 11C-METPET, the use of optimal cutoff values indicates the high specificity, which means that positive result indicates the high likelihood of brain tumor. Considering the high specificity of 11C-METPET, more invasive examinations such as biopsy may be considered in positive cases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Masdeu J.C.
        • Gadhia R.
        • Faridar A.
        Brain CT and MRI: differential diagnosis of imaging findings.
        Handb. Clin. Neurol. 2016; 136: 1037-1054https://doi.org/10.1016/B978-0-444-53486-6.00054-5
        • Al-Okaili R.N.
        • Krejza J.
        • Woo J.H.
        • Wolf R.L.
        • O'Rourke D.M.
        • Judy K.D.
        • et al.
        Intraaxial brain masses: MR imaging-based diagnostic strategy–initial experience.
        Radiology. 2007; 243: 539-550https://doi.org/10.1148/radiol.2432060493
        • Hardy T.A.
        Pseudotumoral demyelinating lesions: diagnostic approach and long-term outcome.
        Curr. Opin. Neurol. 2019; 32: 467-474https://doi.org/10.1097/WCO.0000000000000683
        • Renard D.
        • Castelnovo G.
        • Le Floch A.
        • Guillamo J.S.
        • Thouvenot E.
        Pseudotumoral brain lesions: MRI review.
        Acta. Neurol. Belg. 2017; 117: 17-26https://doi.org/10.1007/s13760-016-0725-z
        • Palanichamy K.
        • Chakravarti A.
        Diagnostic and prognostic significance of methionine uptake and methionine positron emission tomography imaging in gliomas.
        Front. Oncol. 2017; 7: 257https://doi.org/10.3389/fonc.2017.00257
        • Kołodziej M.
        • Bober B.
        • Saracyn M.
        • Kamiński G.
        The role of PET/CT with 11C-methionine in contemporary nuclear medicine.
        Wiad. Lek. 2020; 73: 2076-2079
        • Weller M.
        • Wick W.
        • Aldape K.
        • Brada M.
        • Berger M.
        • Pfister S.M.
        • et al.
        Glioma. Nat. Rev. Dis. Primers. 2015; 1: 15017https://doi.org/10.1038/nrdp.2015.17
        • Hirono S.
        • Ozaki K.
        • Kobayashi M.
        • Hara A.
        • Yamaki T.
        • Matsutani T.
        • et al.
        Oncological and functional outcomes of supratotal resection of IDH1 wild-type glioblastoma based on 11C-methionine PET: a retrospective, single-center study.
        Sci. Rep. 2021; 11: 14554https://doi.org/10.1038/s41598-021-93986-z
        • de Zwart P.L.
        • van Dijken B.R.J.
        • Holtman G.A.
        • Stormezand G.N.
        • Dierckx R.A.J.O.
        • Jan van Laar P.
        • et al.
        Diagnostic accuracy of PET tracers for the differentiation of tumor progression from treatment-related changes in high-grade glioma: a systematic review and metaanalysis.
        J. Nucl. Med. 2020; 61: 498-504https://doi.org/10.2967/jnumed.119.233809
        • Treglia G.
        • Muoio B.
        • Trevisi G.
        • Mattoli M.V.
        • Albano D.
        • Bertagna F.
        • et al.
        Diagnostic performance and prognostic value of PET/CT with different tracers for brain tumors: a systematic review of published meta-analyses.
        Int. J. Mol. Sci. 2019; 20: 4669https://doi.org/10.3390/ijms20194669
        • Ninatti G.
        • Sollini M.
        • Bono B.
        • Gozzi N.
        • Fedorov D.
        • Antunovic L.
        • et al.
        Preoperative [11C] methionine PET to personalize treatment decisions in patients with lower-grade gliomas.
        Neuro. Oncol. 2022; noac040https://doi.org/10.1093/neuonc/noac040
        • Falk Delgado A.
        • Falk Delgado A.
        Discrimination between primary low-grade and high-grade glioma with 11 C-methionine PET: a bivariate diagnostic test accuracy meta-analysis.
        Br. J. Radiol. 2018; 1082: 20170426https://doi.org/10.1259/bjr.20170426
        • Katsanos A.H.
        • Alexiou G.A.
        • Fotopoulos A.D.
        • Jabbour P.
        • Kyritsis A.P.
        • Sioka C.
        Performance of 18F-FDG, 11C-methionine, and 18F-FET PET for glioma grading: a meta-analysis.
        Clin. Nucl. Med. 2019; 44: 864-869https://doi.org/10.1097/RLU.0000000000002654
        • Wang Y.
        • Rapalino O.
        • Heidari P.
        • Loeffler J.
        • Shih H.A.
        • Oh K.
        • et al.
        11C methionine PET (MET-PET) imaging of glioblastoma for detecting postoperative residual disease and response to chemoradiation therapy.
        Int. J. Radiat. Oncol. Biol. Phys. 2018; 102: 1024-1028https://doi.org/10.1016/j.ijrobp.2018.06.011
        • Takenaka S.
        • Asano Y.
        • Shinoda J.
        • Nomura Y.
        • Yonezawa S.
        • Miwa K.
        • et al.
        Comparison of (11)C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis.
        Neurol. Med. Chir.(Tokyo). 2014; 54: 280-289https://doi.org/10.2176/nmc.oa2013-0117
        • Kits A.
        • Martin H.
        • Sanchez-Crespo A.
        • Delgado A.F.
        Diagnostic accuracy of 11 C-methionine PET in detecting neuropathologically confirmed recurrent brain tumor after radiation therapy.
        Ann. Nucl. Med. 2018; 32: 132-141https://doi.org/10.1007/s12149-017-1227-7
        • Terakawa Y.
        • Tsuyuguchi N.
        • Iwai Y.
        • Yamanaka K.
        • Higashiyama S.
        • Takami T.
        • et al.
        Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy.
        J. Nucl. Med. 2008; 49: 694-699https://doi.org/10.1007/s12149-017-1227-7
        • Galldiks N.
        • Kracht L.W.
        • Burghaus L.
        • Thomas A.
        • Jacobs A.H.
        • Heiss W.D.
        • et al.
        Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas.
        Eur. J. Nucl. Med. Mol. Imaging. 2006; 33: 516-524https://doi.org/10.1007/s00259-005-0002-5
        • Ito K.
        • Matsuda H.
        • Kubota K.
        Imaging spectrum and pitfalls of (11)C-methionine positron emission tomography in a series of patients with intracranial lesions.
        Korean. J. Radiol. 2016; 17: 424-434https://doi.org/10.3348/kjr.2016.17.3.424
        • Herholz K.
        • Hölzer T.
        • Bauer B.
        • Schröder R.
        • Voges J.
        • Ernestus R.I.
        • et al.
        11C-methionine PET for differential diagnosis of low-grade gliomas.
        Neurology. 1998; 50: 1316-1322https://doi.org/10.1212/wnl.50.5.1316
        • Ishiwata K.
        • Ido T.
        • Abe Y.
        • Matsuzawa T.
        • Iwata R.
        Tumor uptake studies of S-adenosyl-L-[methyl-11C] methionine and L-[methyl-11C] methionine.
        Int. J. Rad. Appl. Instrum. B. 1988; 15: 123-126https://doi.org/10.1016/0883-2897(88)90077-3
        • Iwadate Y.
        • Shinozaki N.
        • Matsutani T.
        • Uchino Y.
        • Saeki N.
        Molecular imaging of 1p/19q deletion in oligodendroglial tumours with 11C-methionine positron emission tomography.
        J. Neurol. Neurosurg. Psychiatry. 2016; 87: 1016-1021https://doi.org/10.1136/jnnp-2015-311516
        • Akamatsu G.
        • Ikari Y.
        • Nishida H.
        • Nishio T.
        • Ohnishi A.
        • Maebatake A.
        • et al.
        Influence of statistical fluctuation on reproducibility and accuracy of SUVmax and SUVpeak: a phantom study.
        J. Nucl. Med. Technol. 2015; 43: 222-226https://doi.org/10.2967/jnmt.115.161745
        • Youden W.J.
        Index for rating diagnostic tests.
        Cancer. 1950; 3: 32-35https://doi.org/10.1002/1097-0142(1950)3:1
        • Stopa B.M.
        • Juhász C.
        • Mittal S.
        Comparison of amino acid PET to advanced and emerging MRI techniques for neurooncology imaging: a systematic review of the recent studies.
        Mol. Imaging. 2021; : 8874078https://doi.org/10.1155/2021/8874078
        • Filss C.P.
        • Cicone F.
        • Shah N.J.
        • Galldiks N.
        • Langen K.J.
        Amino acid PET and MR perfusion imaging in brain tumours.
        Clin. Transl. Imaging. 2017; 5: 209-223
        • Langen K.J.
        • Galldiks N.
        Update on amino acid PET of brain tumours.
        Curr. Opin. Neurol. 2018; 31: 354-361
        • Okubo S.
        • Zhen H.N.
        • Kawai N.
        • Nishiyama Y.
        • Haba R.
        • Tamiya T.
        Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas.
        J. Neurooncol. 2010; 99: 217-225https://doi.org/10.1007/s11060-010-0117-9
        • Pasternak K.A.
        • Schwake M.
        • Warneke N.
        • Masthoff M.
        • Zawy Alsofy S.
        • Suero Molina E.
        • et al.
        Evaluation of 311 contemporary cases of stereotactic biopsies in patients with neoplastic and non-neoplastic lesions-diagnostic yield and management of non-diagnostic cases.
        Neurosurg. Rev. 2021; 44: 2597-2609https://doi.org/10.1007/s10143-020-01394-0
        • Jagannathan J.
        • Bourne T.D.
        • Schlesinger D.
        • Yen C.P.
        • Shaffrey M.E.
        • Laws Jr., E.R.
        • et al.
        Clinical and pathological characteristics of brain metastasis resected after failed radiosurgery.
        Neurosurgery. 2010; 66: 208-217https://doi.org/10.1227/01.NEU.0000359318.90478.69
        • Nakajima R.
        • Kimura K.
        • Abe K.
        • Sakai S.
        (11)C-methionine PET/CT findings in benign brain disease.
        Jpn. J. Radiol. 2017; 35: 279-288https://doi.org/10.1007/s11604-017-0638-7
        • Lapa C.
        • Kircher M.
        • Da Via M.
        • Schreder M.
        • Rasche L.
        • Kortüm K.M.
        • et al.
        Comparison of 11C-choline and 11C-methionine PET/CT in multiple myeloma.
        Clin. Nucl. Med. 2019; 44: 620-624https://doi.org/10.1097/RLU.0000000000002638
        • Lapa C.
        • Knop S.
        • Schreder M.
        • Rudelius M.
        • Knott M.
        • Jörg G.
        • et al.
        11C-methionine-PET in multiple myeloma: correlation with clinical parameters and bone marrow involvement.
        Theranostics. 2016; 6: 254-261https://doi.org/10.7150/thno.13921
        • Kircher S.
        • Stolzenburg A.
        • Kortüm K.M.
        • Kircher M.
        • Da Via M.
        • Samnick S.
        • et al.
        Hexokinase-2 expression in 11C-methionine-positive, 18F-FDG-negative multiple myeloma.
        J. Nucl. Med. 2019; 60: 348-352https://doi.org/10.2967/jnumed.118.217539
        • Ahn S.Y.
        • Kwon S.Y.
        • Jung S.H.
        • Ahn J.S.
        • Yoo S.W.
        • Min J.J.
        • et al.
        Prognostic significance of interim 11C-methionine PET/CT in primary central nervous system lymphoma.
        Clin. Nucl. Med. 2018; 43: e259-e264https://doi.org/10.1097/RLU.0000000000002154
        • García-Garzon J.R.
        • Villasboas-Rosciolesi D.
        • Baquero M.
        • Bassa P.
        • Soler M.
        • Riera E.
        A false-negative case of primary central nervous system lymphoma on 11C-methionine PET and intense 18F-FDG uptake.
        Clin. Nucl. Med. 2016; 41: 664-665https://doi.org/10.1097/RLU.0000000000001258
        • Michaud L.
        • Beattie B.J.
        • Akhurst T.
        • Dunphy M.
        • Zanzonico P.
        • Finn R.
        • et al.
        (18)F-fluciclovine ((18)F-FACBC) PET imaging of recurrent brain tumors.
        Eur. J. Nucl. Med. Mol. Imaging. 2020; 47: 1353-1367https://doi.org/10.1007/s00259-019-04433-1
        • Wakabayashi T.
        • Hirose Y.
        • Miyake K.
        • Arakawa Y.
        • Kagawa N.
        • Nariai T.
        • et al.
        Determining the extent of tumor resection at surgical planning with (18)F-fluciclovine PET/CT in patients with suspected glioma: multicenter phase III trials.
        Ann Nucl Med. 2021; 35: 1279-1292https://doi.org/10.1007/s12149-021-01670-z
        • D'Souza M.M.
        • Sharma R.
        • Jaimini A.
        • Panwar P.
        • Bansal A.
        • Tripathi M.
        • et al.
        Metabolic assessment of intracranial tuberculomas using 11C-methionine and 18F-FDG PET/CT.
        Nucl. Med. Commun. 2012; 33: 408-414https://doi.org/10.1097/MNM.0b013e32834f9b14
        • Ng D.
        • Jacobs M.
        • Mantil J.
        Combined C-11 methionine and F-18 FDG PET imaging in a case of neurosarcoidosis.
        Clin. Nucl. Med. 2006; 31: 373-375https://doi.org/10.1097/01.rlu.0000222735.19513.bb