Advertisement

A review of artificial intelligence in mammography

      Highlights

      • Over the past decade, CAD powered by AI/DL has shown significant increase in accuracy compared to the traditional CAD.
      • By identifying negative mammograms and de-prioritizing them, AI based CAD tools can optimize radiologist workflow.
      • AI based CAD tools can contribute to increased efficiency as well as reduce interval cancer rates and recall rates.
      • Many challenges to widespread adoption of AI in breast imaging remain, including the cost of implementation as well as the ethical and legal implications.

      Abstract

      Breast cancer is the most common cancer among women worldwide. Mammography is the most widely used modality to detect breast cancer. Over the past decade, computer aided detection (CAD) powered by artificial intelligence (AI)/deep learning has shown significant increase in accuracy compared to the traditional CAD. In this review, we aim to summarize the latest developments in the field of AI and mammography and discuss where future progress may lie.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. The benefits and harms of breast cancer screening: an independent review.
        The Lancet. 2012; 380: 1778-1786https://doi.org/10.1016/S0140-6736(12)61611-0
        • Tabár L.
        • Yen A.M.F.
        • Wu W.Y.Y.
        • et al.
        Insights from the breast cancer screening trials: How screening affects the natural history of breast cancer and implications for evaluating service screening programs.
        Breast J. 2015; 21: 13-20https://doi.org/10.1111/tbj.12354
        • Ou W.C.
        • Polat D.
        • Dogan B.E.
        Deep learning in breast radiology: Current progress and future directions.
        Eur Radiol. 2021; 31: 4872-4885https://doi.org/10.1007/s00330-020-07640-9
        • Welch H.G.
        • Passow H.J.
        Quantifying the benefits and harms of screening mammography.
        JAMA Intern Med. 2014; 174: 448-454https://doi.org/10.1001/jamainternmed.2013.13635
        • Sun Y.
        • Wang X.
        • Tang X.
        Deep learning face representation by joint identification-verification.
        in: Advances in neural information processing systems. 2014
        • Ting D.S.W.
        • Cheung C.Y.L.
        • Lim G.
        • et al.
        Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes.
        JAMA. 2017; 318: 2211-2223https://doi.org/10.1001/jama.2017.18152
        • Larson D.B.
        • Chen M.C.
        • Lungren M.P.
        • Halabi S.S.
        • Stence N.V.
        • Langlotz C.P.
        Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs.
        Radiology. 2018; 287: 313-322https://doi.org/10.1148/radiol.2017170236
        • Lakhani P.
        • Sundaram B.
        Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks.
        Radiology. 2017; 284: 574-582https://doi.org/10.1148/radiol.2017162326
        • Yamashita R.
        • Nishio M.
        • Do R.K.G.
        • Togashi K.
        Convolutional neural networks: An overview and application in radiology.
        Insights Imaging. 2018; 9: 611-629https://doi.org/10.1007/s13244-018-0639-9
        • Wong D.J.
        • Gandomkar Z.
        • Wu W.
        • et al.
        Artificial intelligence and convolution neural networks assessing mammographic images: A narrative literature review.
        J Med Radiat Sci. 2020; 67: 134-142https://doi.org/10.1002/jmrs.385
        • Lee J.G.
        • Jun S.
        • Cho Y.W.
        • et al.
        Deep learning in medical imaging: general overview.
        Korean J Radiol. 2017; 18: 570-584https://doi.org/10.3348/kjr.2017.18.4.570
        • Kooi T.
        • Gubern-Merida A.
        • Mordang J.J.
        • et al.
        A comparison between a deep convolutional neural network and radiologists for classifying regions of interest in mammography.
        in: Proceedings of the 13th International Workshop on Breast Imaging. 9699. Springer-Verlag, 2016: 51-56https://doi.org/10.1007/978-3-319-41546-8_7 (IWDM 2016)
        • Chartrand G.
        • Cheng P.M.
        • Vorontsov E.
        • et al.
        Deep learning: A primer for radiologists.
        Radiographics. 2017; 37: 2113-2131https://doi.org/10.1148/rg.2017170077
        • Krittanawong C.
        The rise of artificial intelligence and the uncertain future for physicians.
        Eur J Intern Med. 2018; 48: e13-e14https://doi.org/10.1016/j.ejim.2017.06.017
        • Bocchi L.
        • Coppini G.
        • Nori J.
        • Valli G.
        Detection of single and clustered microcalcifications in mammograms using fractals models and neural networks.
        Med Eng Phys. 2004; 26: 303-312https://doi.org/10.1016/j.medengphy.2003.11.009
        • Oliver A.
        • Freixenet J.
        • Martí J.
        • et al.
        A review of automatic mass detection and segmentation in mammographic images.
        Med Image Anal. 2010; 14: 87-110https://doi.org/10.1016/j.media.2009.12.005
        • Hupse R.
        • Samulski M.
        • Lobbes M.
        • et al.
        Standalone computer-aided detection compared to radiologists' performance for the detection of mammographic masses.
        Eur Radiol. 2013; 23: 93-100https://doi.org/10.1007/s00330-012-2562-7
        • Gilbert F.J.
        • Astley S.M.
        • Gillan M.G.C.
        • et al.
        Single reading with computer-aided detection for screening mammography.
        N Engl J Med. 2008; 359: 1675-1684https://doi.org/10.1056/NEJMoa0803545
        • LeCun Y.
        • Bengio Y.
        • Hinton G.
        Deep learning.
        Nature. 2015; 521: 436-444https://doi.org/10.1038/nature14539
        • Geras K.J.
        • Mann R.M.
        • Moy L.
        Artificial intelligence for mammography and digital breast tomosynthesis: Current concepts and future perspectives.
        Radiology. 2019; 293: 246-259https://doi.org/10.1148/radiol.2019182627
        • Rodríguez-Ruiz A.
        • Krupinski E.
        • Mordang J.J.
        • et al.
        Detection of breast cancer with mammography: Effect of an artificial intelligence support system.
        Radiology. 2019; 290: 305-314https://doi.org/10.1148/radiol.2018181371
        • Mayo R.C.
        • Kent D.
        • Sen L.C.
        • Kapoor M.
        • Leung J.W.T.
        • Watanabe A.T.
        Reduction of false-positive markings on mammograms: A retrospective comparison study using an artificial intelligence-based CAD.
        J Digit Imaging. 2019; 32: 618-624https://doi.org/10.1007/s10278-018-0168-6
        • Watanabe A.T.
        • Lim V.
        • Vu H.X.
        • et al.
        Improved cancer detection using artificial intelligence: A retrospective evaluation of missed cancers on mammography.
        J Digit Imaging. 2019; 32: 625-637https://doi.org/10.1007/s10278-019-00192-5
        • Kooi T.
        • Litjens G.
        • van Ginneken B.
        • et al.
        Large scale deep learning for computer aided detection of mammographic lesions.
        Med Image Anal. 2017; 35: 303-312https://doi.org/10.1016/j.media.2016.07.007
        • Fotin S.V.
        • Yin Y.
        • Haldankar H.
        • Periaswamy S.
        • JWH M.d
        Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches.
        in: Medical Imaging 2016: Computer-aided Diagnosis. 9785. International Society for Optics and Photonics, 2016https://doi.org/10.1117/12.2217045 (97850X)
        • Morgan M.B.
        • Mates J.L.
        Applications of artificial intelligence in breast imaging.
        Radiol Clin North Am. 2021; 59: 139-148https://doi.org/10.1016/j.rcl.2020.08.007
        • Kim H.E.
        • Kim H.H.
        • Han B.K.
        • et al.
        Changes in cancer detection and false-positive recall in mammography using artificial intelligence: A retrospective, multireader study.
        Lancet Digit Health. 2020; 2: e138-e148https://doi.org/10.1016/S2589-7500(20)30003-0
        • van Winkel S.L.
        • Rodríguez-Ruiz A.
        • Appelman L.
        • et al.
        Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study.
        Eur Radiol. 2021; (Published online May 4)https://doi.org/10.1007/s00330-021-07992-w
        • Pacilè S.
        • Lopez J.
        • Chone P.
        • Bertinotti T.
        • Grouin J.M.
        • Fillard P.
        Improving breast cancer detection accuracy of mammography with the concurrent use of an artificial intelligence tool.
        Radiol Artif Intell. 2020; 2e190208https://doi.org/10.1148/ryai.2020190208
        • Rodriguez-Ruiz A.
        • Lång K.
        • Gubern-Merida A.
        • et al.
        Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study.
        Eur Radiol. 2019; 29: 4825-4832https://doi.org/10.1007/s00330-019-06186-9
      2. Improving Reading Time of Digital Breast Tomosynthesis with Concurrent Computer Aided Detection. White Paper.:8.

        • Conant E.F.
        • Toledano A.Y.
        • Periaswamy S.
        • et al.
        Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis.
        Radiol Artif Intell. 2019; 1e180096https://doi.org/10.1148/ryai.2019180096
        • Balleyguier C.
        • Arfi-Rouche J.
        • Levy L.
        • et al.
        Improving digital breast tomosynthesis reading time: A pilot multi-reader, multi-case study using concurrent computer-aided detection (CAD).
        Eur J Radiol. 2017; 97: 83-89https://doi.org/10.1016/j.ejrad.2017.10.014
        • Hickman S.E.
        • Baxter G.C.
        • Gilbert F.J.
        Adoption of artificial intelligence in breast imaging: Evaluation, ethical constraints and limitations.
        Br J Cancer. 2021; 125: 15-22https://doi.org/10.1038/s41416-021-01333-w
        • Wu N.
        • Phang J.
        • Park J.
        • et al.
        Deep neural networks improve radiologists' performance in breast cancer screening.
        IEEE Trans Med Imaging. 2020; 39: 1184-1194https://doi.org/10.1109/TMI.2019.2945514
        • McKinney S.M.
        • Sieniek M.
        • Godbole V.
        • et al.
        International evaluation of an AI system for breast cancer screening.
        Nature. 2020; 577: 89-94https://doi.org/10.1038/s41586-019-1799-6
        • Becker A.S.
        • Marcon M.
        • Ghafoor S.
        • Wurnig M.C.
        • Frauenfelder T.
        • Boss A.
        Deep learning in mammography: Diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer.
        Invest Radiol. 2017; 52: 434-440https://doi.org/10.1097/RLI.0000000000000358
        • Rodriguez-Ruiz A.
        • Lång K.
        • Gubern-Merida A.
        • et al.
        Stand-alone artificial intelligence for breast cancer detection in mammography: Comparison with 101 radiologists.
        J Natl Cancer Inst. 2019; 111: 916-922https://doi.org/10.1093/jnci/djy222
        • Vourch A.L.
        • Edouard P.
        • Laurent N.
        Breast screening and artificial intelligence: An independent evaluation of two different software carried out at Valenciennes hospital.
        in: 15th international workshop on breast imaging (IWBI2020). 11513. International Society for Optics and Photonics, 2020: 1151321https://doi.org/10.1117/12.2564129
        • Teare P.
        • Fishman M.
        • Benzaquen O.
        • Toledano E.
        • Elnekave E.
        Malignancy detection on mammography using dual deep convolutional neural networks and genetically discovered false color input enhancement.
        J Digit Imaging. 2017; 30: 499-505https://doi.org/10.1007/s10278-017-9993-2
        • Bordás P.
        • Jonsson H.
        • Nyström L.
        • Lenner P.
        Interval cancer incidence and episode sensitivity in the Norrbotten Mammography Screening Programme, Sweden.
        J Med Screen. 2009; 16: 39-45https://doi.org/10.1258/jms.2009.008098
        • Hinton B.
        • Ma L.
        • Mahmoudzadeh A.P.
        • et al.
        Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: A case-case study.
        Cancer Imaging. 2019; 19: 41https://doi.org/10.1186/s40644-019-0227-3
        • Graewingholt A.
        • Rossi P.G.
        Retrospective analysis of the effect on interval cancer rate of adding an artificial intelligence algorithm to the reading process for two-dimensional full-field digital mammography.
        J Med Screen. 2021; 28: 369-371https://doi.org/10.1177/0969141320988049
        • Lång K.
        • Hofvind S.
        • Rodríguez-Ruiz A.
        • Andersson I.
        Can artificial intelligence reduce the interval cancer rate in mammography screening?.
        Eur Radiol. 2021; 31: 5940-5947https://doi.org/10.1007/s00330-021-07686-3
        • Niraula S.
        • Biswanger N.
        • Hu P.
        • Lambert P.
        • Decker K.
        Incidence, characteristics, and outcomes of interval breast cancers compared with screening-detected breast cancers.
        JAMA Netw Open. 2020; 3: e2018179https://doi.org/10.1001/jamanetworkopen.2020.18179
      3. Breast Screening Programme, England 2019-20. NHS Digital. Accessed August 17, 2021. https://digital.nhs.uk/data-and-information/publications/statistical/breast-screening-programme/england---2019-20.

        • Salim M.
        • Dembrower K.
        • Eklund M.
        • Lindholm P.
        • Strand F.
        Range of radiologist performance in a population-based screening cohort of 1 million digital mammography examinations.
        Radiology. 2020; 297: 33-39https://doi.org/10.1148/radiol.2020192212
        • Kyono T.
        • Gilbert F.J.
        • van der Schaar M.
        Improving workflow efficiency for mammography using machine learning.
        J Am Coll Radiol. 2020; 17: 56-63https://doi.org/10.1016/j.jacr.2019.05.012
        • Yala A.
        • Schuster T.
        • Miles R.
        • Barzilay R.
        • Lehman C.
        A deep learning model to triage screening mammograms: A simulation study.
        Radiology. 2019; 293: 38-46https://doi.org/10.1148/radiol.2019182908
        • Raya-Povedano J.L.
        • Romero-Martín S.
        • Elías-Cabot E.
        • Gubern-Mérida A.
        • Rodríguez-Ruiz A.
        • Álvarez-Benito M.
        AI-based strategies to reduce workload in breast cancer screening with mammography and tomosynthesis: A retrospective evaluation.
        Radiology. 2021; 300: 57-65https://doi.org/10.1148/radiol.2021203555
        • Lång K.
        • Dustler M.
        • Dahlblom V.
        • Åkesson A.
        • Andersson I.
        • Zackrisson S.
        Identifying normal mammograms in a large screening population using artificial intelligence.
        Eur Radiol. 2021; 31: 1687-1692https://doi.org/10.1007/s00330-020-07165-1
        • Dembrower K.
        • Wåhlin E.
        • Liu Y.
        • et al.
        Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: A retrospective simulation study.
        Lancet Digit Health. 2020; 2: e468-e474https://doi.org/10.1016/S2589-7500(20)30185-0
        • Lehman C.D.
        • Wellman R.D.
        • Buist D.S.M.
        • et al.
        Diagnostic accuracy of digital screening mammography with and without computer-aided detection.
        JAMA Intern Med. 2015; 175: 1828-1837https://doi.org/10.1001/jamainternmed.2015.5231
        • Perry N.
        • Broeders M.
        • de Wolf C.
        • Törnberg S.
        • Holland R.
        • von Karsa L.
        European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edition–Summary document.
        Ann Oncol. 2008; 19: 614-622https://doi.org/10.1093/annonc/mdm481
        • Taylor-Phillips S.
        • Stinton C.
        Double reading in breast cancer screening: Considerations for policy-making.
        BJR. 2020; 9320190610https://doi.org/10.1259/bjr.20190610
        • Salim M.
        • Wåhlin E.
        • Dembrower K.
        • et al.
        External evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammograms.
        JAMA Oncol. 2020; 6: 1581-1588https://doi.org/10.1001/jamaoncol.2020.3321
        • Graewingholt A.
        • Duffy S.
        Retrospective comparison between single reading plus an artificial intelligence algorithm and two-view digital tomosynthesis with double reading in breast screening.
        J Med Screen. 2021; 28: 365-368https://doi.org/10.1177/0969141320984198
        • Chen M.M.
        • Golding L.P.
        • Nicola G.N.
        Who will pay for AI?.
        Radiology: Artificial Intelligence. 2021; 3e210030https://doi.org/10.1148/ryai.2021210030
        • Gerke S.
        • Minssen T.
        • Cohen G.
        Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare, 2020: 295-336https://doi.org/10.1016/B978-0-12-818438-7.00012-5