Advertisement

Radiogenomics in personalized management of lung cancer patients: Where are we?

  • Author Footnotes
    1 Both authors contributed equally to this work.
    Jose Arimateia Batista Araujo-Filho
    Footnotes
    1 Both authors contributed equally to this work.
    Affiliations
    Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA

    Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet 91, Sao Paulo, SP 01308-050, Brazil
    Search for articles by this author
  • Author Footnotes
    1 Both authors contributed equally to this work.
    Maria Mayoral
    Correspondence
    Corresponding author at: Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Medical Imaging Department, Hospital Clinic of Barcelona, 170 Villarroel street, Barcelona 08036, Spain.
    Footnotes
    1 Both authors contributed equally to this work.
    Affiliations
    Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA

    Medical Imaging Department, Hospital Clinic of Barcelona, 170 Villarroel street, Barcelona 08036, Spain
    Search for articles by this author
  • Natally Horvat
    Affiliations
    Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
    Search for articles by this author
  • Fernando C. Santini
    Affiliations
    Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
    Search for articles by this author
  • Peter Gibbs
    Affiliations
    Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA

    Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
    Search for articles by this author
  • Michelle S. Ginsberg
    Affiliations
    Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
    Search for articles by this author
  • Author Footnotes
    1 Both authors contributed equally to this work.
Published:February 03, 2022DOI:https://doi.org/10.1016/j.clinimag.2022.01.012

      Highlights

      • Radiogenomics links radiomic data with genomic data.
      • Promising decision-making tool for personalized care in lung cancer patients.
      • The use of radiogenomics for personalized medicine remains investigational.
      • Improved robustness of radiogenomic models is needed before clinical implementation.

      Abstract

      With the rise of artificial intelligence, radiomics has emerged as a field of translational research based on the extraction of mineable high-dimensional data from radiological images to create “big data” datasets for the purpose of identifying distinct sub-visual imaging patterns. The integrated analysis of radiomic data and genomic data is termed radiogenomics, a promising strategy to identify potential imaging biomarkers for predicting driver mutations and other genomic parameters. In lung cancer, recent advances in whole-genome sequencing and the identification of actionable molecular alterations have led to an increased interest in understanding the complex relationships between imaging and genomic data, with the potential of guiding therapeutic strategies and predicting clinical outcomes. Although the integration of the radiogenomics data into lung cancer management may represent a new paradigm in the field, the use of this technique as a clinical biomarker remains investigational and still necessitates standardization and robustness to be effectively translated into the clinical practice. This review summarizes the basic concepts, potential contributions, challenges, and opportunities of radiogenomics in the management of patients with lung cancer.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vijay P.
        • McIntyre A.B.
        • Mason C.E.
        • Greenfield J.P.
        • Li S.
        Clinical genomics: challenges and opportunities.
        Crit Rev Eukaryot Gene Expr. 2016; 26: 97-113https://doi.org/10.1615/CritRevEukaryotGeneExpr.2016015724
        • Kim G.
        • Kim J.
        • Cha H.
        • Park W.Y.
        • Ahn J.S.
        • Ahn M.J.
        • et al.
        Metabolic radiogenomics in lung cancer: associations between FDG PET image features and oncogenic signaling pathway alterations.
        Sci Rep. 2020; 10: 13231https://doi.org/10.1038/s41598-020-70168-x
        • Shui L.
        • Ren H.
        • Yang X.
        • Li J.
        • Chen Z.
        • Yi C.
        • et al.
        The era of radiogenomics in precision medicine: an emerging approach to support diagnosis, treatment decisions, and prognostication in oncology.
        Front Oncol. 2020; 10570465https://doi.org/10.3389/fonc.2020.570465
        • Rizzo S.
        • Botta F.
        • Raimondi S.
        • Origgi D.
        • Fanciullo C.
        • Morganti A.G.
        • et al.
        Radiomics: the facts and the challenges of image analysis.
        Eur Radiol Exp. 2018; 2: 36https://doi.org/10.1186/s41747-018-0068-z
        • Gillies R.J.
        • Kinahan P.E.
        • Hricak H.
        Radiomics: images are more than pictures, they are data.
        Radiology. 2016; 278: 563-577https://doi.org/10.1148/radiol.2015151169
        • Lee G.
        • Lee H.Y.
        • Park H.
        • Schiebler M.L.
        • van Beek E.J.R.
        • Ohno Y.
        • et al.
        Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art.
        Eur J Radiol. 2017; 86: 297-307https://doi.org/10.1016/j.ejrad.2016.09.005
        • Hassani C.
        • Varghese B.A.
        • Nieva J.
        • Duddalwar V.
        Radiomics in pulmonary lesion imaging.
        Am J Roentgenol. 2019; 212: 497-504https://doi.org/10.2214/AJR.18.20623
        • Thawani R.
        • McLane M.
        • Beig N.
        • Ghose S.
        • Prasanna P.
        • Velcheti V.
        • et al.
        Radiomics and radiogenomics in lung cancer: a review for the clinician.
        Lung Cancer. 2018; 115: 34-41https://doi.org/10.1016/j.lungcan.2017.10.015
        • Mu W.
        • Tunali I.
        • Gray J.E.
        • Qi J.
        • Schabath M.B.
        • Gillies R.J.
        Radiomics of 18 F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy.
        Eur J Nucl Med Mol Imaging. 2020; 47: 1168-1182https://doi.org/10.1007/s00259-019-04625-9
        • Liu Y.
        • Wu M.
        • Zhang Y.
        • Luo Y.
        • He S.
        • Wang Y.
        • et al.
        Imaging biomarkers to predict and evaluate the effectiveness of immunotherapy in advanced non-small-cell lung cancer.
        Front Oncol. 2021; 11657615https://doi.org/10.3389/fonc.2021.657615
        • Horvat N.
        • Bates D.D.B.
        • Petkovska I.
        Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review.
        Abdom Radiol. 2019; 44: 3764-3774https://doi.org/10.1007/s00261-019-02042-y
        • Lubner M.G.
        • Smith A.D.
        • Sandrasegaran K.
        • Sahani D.V.
        • Pickhardt P.J.
        CT texture analysis: definitions, applications, biologic correlates, and challenges.
        Radiographics. 2017; 37: 1483-1503https://doi.org/10.1148/rg.2017170056
        • Giger M.L.
        Machine learning in medical imaging.
        J Am Coll Radiol. 2018; 15: 512-520https://doi.org/10.1016/j.jacr.2017.12.028
        • Suzuki K.
        Overview of deep learning in medical imaging.
        Radiol Phys Technol. 2017; 10: 257-273https://doi.org/10.1007/s12194-017-0406-5
        • Larue R.T.
        • Defraene G.
        • De Ruysscher D.
        • Lambin P.
        • van Elmpt W.
        Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures.
        Br J Radiol. 2017; 90: 20160665https://doi.org/10.1259/bjr.20160665
        • Wang H.
        • Ding M.X.
        • Zhai Z.H.
        Dynamics of DNA synthesis in IBRV (infectious bovine rhinotracheitis virus) infected cells and the morphogenesis of the viruses.
        Wei Sheng Wu Xue Bao. 1985; 25: 306-312
        • Saab S.
        • Zalzale H.
        • Rahal Z.
        • Khalifeh Y.
        • Sinjab A.
        • Kadara H.
        Insights into lung cancer immune-based biology, prevention, and treatment.
        Front Immunol. 2020; 11: 159https://doi.org/10.3389/fimmu.2020.00159
        • Jakubek Y.
        • Lang W.
        • Vattathil S.
        • Garcia M.
        • Xu L.
        • Huang L.
        • et al.
        Genomic landscape established by allelic imbalance in the cancerization field of a normal appearing airway.
        Cancer Res. 2016; 76: 3676-3683https://doi.org/10.1158/0008-5472.CAN-15-3064
        • Vyse S.
        • Huang P.H.
        Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer.
        Signal Transduct Target Ther. 2019; 4: 5https://doi.org/10.1038/s41392-019-0038-9
        • Friedlaender A.
        • Drilon A.
        • Weiss G.J.
        • Banna G.L.
        • Addeo A.
        KRAS as a druggable target in NSCLC: rising like a phoenix after decades of development failures.
        Cancer Treat Rev. 2020; 85101978https://doi.org/10.1016/j.ctrv.2020.101978
        • Shi Y.
        • Au J.S.
        • Thongprasert S.
        • Srinivasan S.
        • Tsai C.M.
        • Khoa M.T.
        • et al.
        A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER).
        J Thorac Oncol. 2014; 9: 154-162https://doi.org/10.1097/JTO.0000000000000033
        • Network C.G.A.R.
        Comprehensive molecular profiling of lung adenocarcinoma.
        Nature. 2014; 511: 543-550https://doi.org/10.1038/nature13385
        • Herbrink M.
        • Nuijen B.
        • Schellens J.H.
        • Beijnen J.H.
        Variability in bioavailability of small molecular tyrosine kinase inhibitors.
        Cancer Treat Rev. 2015; 41: 412-422https://doi.org/10.1016/j.ctrv.2015.03.005
        • Revelo A.E.
        • Martin A.
        • Velasquez R.
        • Kulandaisamy P.C.
        • Bustamante J.
        • Keshishyan S.
        • et al.
        Liquid biopsy for lung cancers: an update on recent developments.
        Ann Transl Med. 2019; 7: 349https://doi.org/10.21037/atm.2019.03.28
        • Osoegawa K.
        • Montero-Martín G.
        • Mallempati K.C.
        • Bauer M.
        • Milius R.P.
        • Maiers M.
        • et al.
        Challenges for the standardized reporting of NGS HLA genotyping: surveying gaps between clinical and research laboratories.
        Hum Immunol. 2021; (S0198-8859(21)00210-X)https://doi.org/10.1016/j.humimm.2021.08.011
        • Lu X.
        • Li M.
        • Zhang H.
        • Hua S.
        • Meng F.
        • Yang H.
        • et al.
        A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma.
        Phys Med Biol. 2020; 65055012https://doi.org/10.1088/1361-6560/ab6f98
        • Zhang L.
        • Chen B.
        • Liu X.
        • Song J.
        • Fang M.
        • Hu C.
        • et al.
        Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer.
        Transl Oncol. 2018; 11: 94-101https://doi.org/10.1016/j.tranon.2017.10.012
        • Zhang J.
        • Zhao X.
        • Zhao Y.
        • Zhang Z.
        • Wang J.
        • Wang Y.
        • et al.
        Value of pre-therapy 18 F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer.
        Eur J Nucl Med Mol Imaging. 2020; 47: 1137-1146https://doi.org/10.1007/s00259-019-04592-1
        • Zhang G.
        • Cao Y.
        • Zhang J.
        • Ren J.
        • Zhao Z.
        • Zhang X.
        • et al.
        Predicting EGFR mutation status in lung adenocarcinoma: development and validation of a computed tomography-based radiomics signature.
        Am J Cancer Res. 2021; 11: 546-560
        • Jia T.Y.
        • Xiong J.F.
        • Li X.Y.
        • Yu W.
        • Xu Z.Y.
        • Cai X.W.
        • et al.
        Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling.
        Eur Radiol. 2019; 29: 4742-4750https://doi.org/10.1007/s00330-019-06024-y
        • Zhang B.
        • Qi S.
        • Pan X.
        • Li C.
        • Yao Y.
        • Qian W.
        • et al.
        Deep CNN model using CT radiomics feature mapping recognizes EGFR gene mutation status of lung adenocarcinoma.
        Front Oncol. 2020; 10598721https://doi.org/10.3389/fonc.2020.598721
        • Wang S.
        • Shi J.
        • Ye Z.
        • Dong D.
        • Yu D.
        • Zhou M.
        • et al.
        Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning.
        Eur Respir J. 2019; 53https://doi.org/10.1183/13993003.00986-2018
        • Tu W.
        • Sun G.
        • Fan L.
        • Wang Y.
        • Xia Y.
        • Guan Y.
        • et al.
        Radiomics signature: a potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology.
        Lung Cancer. 2019; 132: 28-35https://doi.org/10.1016/j.lungcan.2019.03.025
        • Zhang M.
        • Bao Y.
        • Rui W.
        • Shangguan C.
        • Liu J.
        • Xu J.
        • et al.
        Performance of 18 F-FDG PET/CT radiomics for predicting EGFR mutation status in patients with non-small cell lung cancer.
        Front Oncol. 2020; 10568857https://doi.org/10.3389/fonc.2020.568857
        • Hong D.
        • Xu K.
        • Zhang L.
        • Wan X.
        • Guo Y.
        Radiomics signature as a predictive factor for EGFR mutations in advanced lung adenocarcinoma.
        Front Oncol. 2020; 10: 28https://doi.org/10.3389/fonc.2020.00028
        • Song L.
        • Zhu Z.
        • Mao L.
        • Li X.
        • Han W.
        • Du H.
        • et al.
        Clinical, conventional CT and radiomic feature-based machine learning models for predicting ALK rearrangement status in lung adenocarcinoma patients.
        Front Oncol. 2020; 10: 369https://doi.org/10.3389/fonc.2020.00369
        • Yamamoto S.
        • Korn R.L.
        • Oklu R.
        • Migdal C.
        • Gotway M.B.
        • Weiss G.J.
        • et al.
        ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization.
        Radiology. 2014; 272: 568-576https://doi.org/10.1148/radiol.14140789
        • Yoon J.
        • Suh Y.J.
        • Han K.
        • Cho H.
        • Lee H.J.
        • Hur J.
        • et al.
        Utility of CT radiomics for prediction of PD-L1 expression in advanced lung adenocarcinomas.
        Thorac Cancer. 2020; 11: 993-1004https://doi.org/10.1111/1759-7714.13352
        • Jiang M.
        • Sun D.
        • Guo Y.
        • Xiao J.
        • Wang L.
        • Yao X.
        Assessing PD-L1 expression level by radiomic features from PET/CT in nonsmall cell lung cancer patients: an initial result.
        Acad Radiol. 2020; 27: 171-179https://doi.org/10.1016/j.acra.2019.04.016
        • Song J.
        • Wang L.
        • Ng N.N.
        • Zhao M.
        • Shi J.
        • Wu N.
        • et al.
        Development and validation of a machine learning model to explore tyrosine kinase inhibitor response in patients with stage IV EGFR variant-positive non-small cell lung cancer.
        JAMA Netw Open. 2020; 3e2030442https://doi.org/10.1001/jamanetworkopen.2020.30442
        • Kim K.H.
        • Kim J.
        • Park H.
        • Kim H.
        • Lee S.H.
        • Sohn I.
        • et al.
        Parallel comparison and combining effect of radiomic and emerging genomic data for prognostic stratification of non-small cell lung carcinoma patients.
        Thorac Cancer. 2020; 11: 2542-2551https://doi.org/10.1111/1759-7714.13568
        • Chen Y.H.
        • Wang T.F.
        • Chu S.C.
        • Lin C.B.
        • Wang L.Y.
        • Lue K.H.
        • et al.
        Incorporating radiomic feature of pretreatment 18F-FDG PET improves survival stratification in patients with EGFR-mutated lung adenocarcinoma.
        PLoS One. 2020; 15e0244502https://doi.org/10.1371/journal.pone.0244502
        • Beig N.
        • Khorrami M.
        • Alilou M.
        • Prasanna P.
        • Braman N.
        • Orooji M.
        • et al.
        Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas.
        Radiology. 2019; 290: 783-792
        • Khorrami M.
        • Khunger M.
        • Zagouras A.
        • Patil P.
        • Thawani R.
        • Bera K.
        • et al.
        Combination of peri- and intratumoral radiomic features on baseline CT scans predicts response to chemotherapy in lung adenocarcinoma.
        Radiol Artif Intell. 2019; 1180012
        • Pérez-Morales J.
        • Tunali I.
        • Stringfield O.
        • Eschrich S.A.
        • Balagurunathan Y.
        • Gillies R.J.
        • et al.
        Peritumoral and intratumoral radiomic features predict survival outcomes among patients diagnosed in lung cancer screening.
        Sci Rep. 2020; 10: 10528
        • Liao G.
        • Huang L.
        • Wu S.
        • Zhang P.
        • Xie D.
        • Yao L.
        • et al.
        Preoperative CT-based peritumoral and tumoral radiomic features prediction for tumor spread through air spaces in clinical stage I lung adenocarcinoma.
        Lung Cancer. 2021; 163: 87-95
        • Gao X.
        • Chu C.
        • Li Y.
        • Lu P.
        • Wang W.
        • Liu W.
        • et al.
        The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer.
        Eur J Radiol. 2015; 84: 312-317https://doi.org/10.1016/j.ejrad.2014.11.006
        • Xu X.
        • Huang L.
        • Chen J.
        • Wen J.
        • Liu D.
        • Cao J.
        • et al.
        Application of radiomics signature captured from pretreatment thoracic CT to predict brain metastases in stage III/IV ALK-positive non-small cell lung cancer patients.
        J Thorac Dis. 2019; 11: 4516-4528https://doi.org/10.21037/jtd.2019.11.01
        • Sun R.
        • Limkin E.J.
        • Vakalopoulou M.
        • Dercle L.
        • Champiat S.
        • Han S.R.
        • et al.
        A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study.
        Lancet Oncol. 2018; 19: 1180-1191https://doi.org/10.1016/S1470-2045(18)30413-3
        • Lafata K.J.
        • Corradetti M.N.
        • Gao J.
        • Jacobs C.D.
        • Weng J.
        • Chang Y.
        • et al.
        Radiogenomic analysis of locally advanced lung cancer based on CT imaging and intratreatment changes in cell-free DNA.
        Radiol Imaging Cancer. 2021; 3e200157https://doi.org/10.1148/rycan.2021200157
        • Cucchiara F.
        • Del Re M.
        • Valleggi S.
        • Romei C.
        • Petrini I.
        • Lucchesi M.
        • et al.
        Integrating liquid biopsy and radiomics to monitor clonal heterogeneity of EGFR-positive non-small cell lung cancer.
        Front Oncol. 2020; 10593831https://doi.org/10.3389/fonc.2020.593831
        • Yamamoto S.
        • Huang D.
        • Du L.
        • Korn R.L.
        • Jamshidi N.
        • Burnette B.L.
        • et al.
        Radiogenomic analysis demonstrates associations between 18F-Fluoro-2-deoxyglucose PET, prognosis, and epithelial-mesenchymal transition in non-small cell lung cancer.
        Radiology. 2016; 280: 261-270https://doi.org/10.1148/radiol.2016160259
        • Rios Velazquez E.
        • Parmar C.
        • Liu Y.
        • Coroller T.P.
        • Cruz G.
        • Stringfield O.
        • et al.
        Somatic mutations drive distinct imaging phenotypes in lung cancer.
        Cancer Res. 2017; 77: 3922-3930https://doi.org/10.1158/0008-5472.CAN-17-0122
        • Zhou M.
        • Leung A.
        • Echegaray S.
        • Gentles A.
        • Shrager J.B.
        • Jensen K.C.
        • et al.
        Non-small cell lung cancer radiogenomics map identifies relationships between molecular and imaging phenotypes with prognostic implications.
        Radiology. 2018; 286: 307-315https://doi.org/10.1148/radiol.2017161845
        • Jong E.E.C.
        • van Elmpt W.
        • Rizzo S.
        • Colarieti A.
        • Spitaleri G.
        • Leijenaar R.T.H.
        • et al.
        Applicability of a prognostic CT-based radiomic signature model trained on stage I-III non-small cell lung cancer in stage IV non-small cell lung cancer.
        Lung Cancer. 2018; 124: 6-11https://doi.org/10.1016/j.lungcan.2018.07.023
        • Yang X.
        • Dong X.
        • Wang J.
        • Li W.
        • Gu Z.
        • Gao D.
        • et al.
        Computed tomography-based radiomics signature: a potential indicator of epidermal growth factor receptor mutation in pulmonary adenocarcinoma appearing as a subsolid nodule.
        Oncologist. 2019; 24: e1156-e1164https://doi.org/10.1634/theoncologist.2018-0706
        • Mu W.
        • Jiang L.
        • Zhang J.Y.
        • Shi Y.
        • Gray J.E.
        • Tunali I.
        • et al.
        Non-invasive decision support for NSCLC treatment using PET/CT radiomics.
        Nat Commun. 2020; 11: 5228https://doi.org/10.1038/s41467-020-19116-x
        • Lu L.
        • Sun S.H.
        • Yang H.E.L.
        • Guo P.
        • Schwartz L.H.
        • et al.
        Radiomics prediction of EGFR status in lung cancer - our experience in using multiple feature extractors and the cancer imaging archive data.
        Tomography. 2020; 6: 223-230https://doi.org/10.18383/j.tom.2020.00017