Highlights
- •A novel CNN model can automatically detect and output the precise anatomical localization and classification of rib fractures.
- •The sensitivity of localization reached 94.87% and 97.11% in the right and left ribs, respectively.
- •The CNN model had a certain robustness verified by the external test, and it matched or surpassed the detection and classification performance of experienced radiologists.
Abstract
Objective
To develop a convolutional neural network (CNN) model for the detection, precise anatomical
localization (right 1-12th and left 1-12th) and classification (fresh, healing and
old fractures) of rib fractures automatically, and to compare the performance with
the experienced radiologists.
Materials and methods
A total of 640 rib fracture patients with 340,501 annotations were retrospectively
collected from three hospitals. They consisted of a classification training dataset
(n = 482), a localization training dataset (n = 30), an internal testing dataset (n = 90)
and an external testing dataset (n = 38). RetinaNet with rib localization postprocessing
and the result merging technique were employed to structure the CNN model. ROC curve,
free-response ROC curve, AUC, precision, recall, and F1-score were calculated to choose
the better option between model I (training classification and localization data together)
and model II (adding an additional classification model to model I).
Results
The detection and classification performance of rib fractures was better in model
II than in model I. The sensitivity of localization reached 97.11% and 94.87% on the
right and left ribs, respectively. In the external dataset with different CT scanner
and slice thickness, model II showed better diagnostic performance. Moreover, the
CNN model was superior in diagnosing fresh and healing fractures to 5 radiologists
and consumed shorter diagnosis time.
Conclusions
Our CNN model was capable of detection, precise anatomical localization, and classification
of rib fractures automatically.
Abbreviations:
CNN (convolutional neural network), DL (deep learning), ROC (receiver operating characteristic), fROC (free-response receiver operating characteristic), AUC (area under the curve), RPN (region proposal network), GT (ground truth)Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Clinical ImagingAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Morbidity, mortality, associated injuries, and management of traumatic rib fractures.J Chin Med Assoc. 2016; 79: 329-334
- Missed rib fractures on evaluation of initial chest CT for trauma patients: pattern analysis and diagnostic value of coronal multiplanar reconstruction images with multidetector row CT.Br J Radiol. 2012; 85: e845-e850
- Rib fracture fixation: indications and outcomes.Crit Care Clin. 2017; 33: 153-165
- Improving rib fracture detection accuracy and reading efficiency with deep learning-based detection software: a clinical evaluation.Br J Radiol. 2020; 9420200870
- Traumatic rib injury: patterns, imaging pitfalls, complications, and treatment.Radiographics. 2017; 37: 628-651
- MDCT evaluation of costal bone lesions.Medicine. 2015; 94
- Rib fracture diagnosis in the Panscan Era.Ann Emerg Med. 2017; 70: 904-909
- Quantitative measurement method for possible rib fractures in chest radiographs.Healthc Inform Res. 2013; 19: 196-204
- Automatic detection and classification of rib fractures on thoracic CT using convolutional neural network: accuracy and feasibility.Korean J Radiol. 2020; 21: 869-879
- Long radiology workdays reduce detection and accommodation accuracy.J Am Coll Radiol. 2010; 7: 698-704
- Automatic rib cage unfolding with CT cylindrical projection reformat in polytraumatized patients for rib fracture detection and characterization: feasibility and clinical application.Eur J Radiol. 2019; 110: 121-127
- The ribs unfolded - a CT visualization algorithm for fast detection of rib fractures: effect on sensitivity and specificity in trauma patients.Eur Radiol. 2015; 25: 1865-1874
- Evaluation of rib fractures on a single-in-plane image reformation of the rib cage in CT examinations.Acad Radiol. 2017; 24: 153-159
- New bone post-processing tools in forensic imaging: a multi-reader feasibility study to evaluate detection time and diagnostic accuracy in rib fracture assessment.Int J Leg Med. 2017; 131: 489-496
- Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography.Korean J Radiol. 2020; 21: 891-899
- Deep-learning-assisted detection and segmentation of rib fractures from CT scans: development and validation of FracNet.EBioMedicine. 2020; : 62
- Automatic detection and classification of rib fractures based on patients' CT images and clinical information via convolutional neural network.Eur Radiol. 2020; 31: 3815-3825
- Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images.Comput Med Imaging Graph. 2021; 88101843
- Assessment of convolutional neural networks for automated classification of chest radiographs.Radiology. 2019; 290: 537-544
- Convolutional neural networks for automated fracture detection and localization on wrist radiographs.Radiology. 2019; 1
- Automated coronary artery atherosclerosis detection and weakly supervised localization on coronary CT angiography with a deep 3-dimensional convolutional neural network.Comput Med Imaging Graph. 2020; 83101721
- When is a fracture not “Fresh”? Aligning reimbursement with patient outcome after treatment with low-intensity pulsed ultrasound.J Orthop Trauma. 2017; 31: 248-251
- Comparison of computed tomography and chest radiography in the detection of rib fractures in abused infants.Child Abuse Negl. 2008; 32: 659-663
- Treatment of traumatic clavicular pseudoarthrosis with the hunec colchero nail.Acta Ortop Mex. 2007; 21: 63-68
- Focal loss for dense object detection.IEEE Trans Pattern Anal Mach Intell. 2020; 42: 318-327
- Lung infection quantification of COVID-19 in CT images with deep learning.2020
- Missed rib fractures on initial chest CT in trauma patients: time patterns, clinical and forensic significance.Eur Radiol. 2020; 31: 2332-2339
- Feature pyramid reconfiguration with consistent loss for object detection.IEEE Trans Image Process. 2019; https://doi.org/10.1109/TIP.2019.2917781
- Inspection of visible components in urine based on deep learning.Med Phys. 2020; 47: 2937-2949
Article info
Publication history
Published online: September 21, 2021
Accepted:
September 13,
2021
Received in revised form:
September 9,
2021
Received:
May 9,
2021
Identification
Copyright
© 2021 Elsevier Inc. All rights reserved.