Diagnostic accuracy of shuttle CT angiography (CTA) and helical CTA in the diagnosis of vasospasm

Published:September 21, 2021DOI:


      • CTAs demonstrated high diagnostic accuracy for VS in a retrospective cohort.
      • CTAs has advantages of lower radiation dose and lower iodine contrast dose.
      • CTAs should be considered in patients requiring serial CTA/CTP assessment e.g. ASAH.



      To evaluate the diagnostic accuracy of computed tomography angiography (CTA) acquired with shuttle technique (CTAs) and helical CTA (CTAh) for vasospasm, using digital subtraction angiography (DSA) obtained within 24 h as reference standard.


      Thirty-six patients with suspected vasospasm in the setting of aneurysmal subarachnoid hemorrhage (ASAH, 30/36) or acute inflammatory/infectious conditions (6/36) who underwent CTAs (17/36) or CTAh (19/36) followed by DSA within 24 h were identified retrospectively. Presence of vasospasm in the proximal cerebral arterial segments was assessed qualitatively and semi-quantitatively on CTA and subsequent DSA. Sensitivity, specificity, and receiver operating characteristic (ROC) curves were calculated. Inter-rater variability was assessed using Cohen's kappa.


      On CTAs, 35% of patients had low and 65% had high vasospasm burden. On CTAh, 37% had low and 63% had high vasospasm burden. ROC analysis demonstrated an AUC of 0.87 for CTAs (95%CI 0.67–1.00, p = 0.015) and 0.88 for CTAh (0.72–1.00, p = 0.028). Cohen's kappa was 0.843 (95%CI 0.548–1.000). Thresholding with Youden's J index, CTAs had a sensitivity of 85.71% (95%CI 48.69 to 99.27) and specificity of 66.67% (35.42 to 87.94). CTAh had sensitivity of 100% (56.55 to 100.00) and specificity of 78.57% (52.41 to 92.43).


      CTAs and CTAh yielded similar sensitivity, specificity, and AUC values on ROC analysis for the detection of vasospasm using DSA as reference standard. Our findings suggest that CTAs is a promising alternative to CTAh especially in patients requiring serial imaging, given its potential advantages of decreased radiation exposure, contrast dose, and cost-effectiveness.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Eisenhut M.
        Vasospasm in cerebral inflammation.
        Int J Inflamm. 2014; 2014509707
        • Ingall T.
        • Asplund K.
        • Mähönen M.
        • Bonita R.
        A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study.
        Stroke. May 2000; 31: 1054-1061
        • Molyneux A.J.
        • Kerr R.S.
        • Birks J.
        • et al.
        Risk of recurrent subarachnoid haemorrhage, death, or dependence and standardised mortality ratios after clipping or coiling of an intracranial aneurysm in the International Subarachnoid Aneurysm Trial (ISAT): long-term follow-up.
        Lancet Neurol. May 2009; 8: 427-433
        • Mayer S.A.
        • Kreiter K.T.
        • Copeland D.
        • et al.
        Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage.
        Neurology. 2002; 59: 1750-1758
        • Vergouwen M.D.
        • Vermeulen M.
        • Coert B.A.
        • Stroes E.S.
        • Roos Y.B.
        Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia.
        J Cereb Blood Flow Metab. Nov 2008; 28: 1761-1770
        • Greenberg E.D.
        • Gold R.
        • Reichman M.
        • et al.
        Diagnostic accuracy of CT angiography and CT perfusion for cerebral vasospasm: a meta-analysis.
        Am J Neuroradiol. 2010; 31: 1853-1860
        • Frontera J.A.
        • Fernandez A.
        • Schmidt J.M.
        • et al.
        Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition?.
        Stroke. Jun 2009; 40: 1963-1968
        • Sanelli P.C.
        • Ugorec I.
        • Johnson C.E.
        • et al.
        Using quantitative CT perfusion for evaluation of delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage.
        AJNR Am J Neuroradiol. Dec 2011; 32: 2047-2053
        • Li K.
        • Barras C.D.
        • Chandra R.V.
        • et al.
        A review of the management of cerebral vasospasm after aneurysmal subarachnoid hemorrhage.
        World Neurosurg. Jun 2019; 126: 513-527
        • Hollingworth M.
        • Chen P.R.
        • Goddard A.J.
        • Coulthard A.
        • Söderman M.
        • Bulsara K.R.
        Results of an international survey on the investigation and endovascular management of cerebral vasospasm and delayed cerebral ischemia.
        World Neurosurg. Jun 2015; 83: 1120-1126.e1
        • Ivanidze J.
        • Sanelli P.C.
        Vasospasm: role of imaging in detection and monitoring treatment.
        Neuroimaging Clin N Am. May 2021; 31: 147-155
        • Bricout N.
        • Estrade L.
        • Boustia F.
        • Kalsoum E.
        • Pruvo J.P.
        • Leclerc X.
        Reduced-dose CT protocol for the assessment of cerebral vasospasm.
        Neuroradiology. Dec 2015; 57: 1211-1218
        • Wintermark M.
        • Ko N.U.
        • Smith W.S.
        • Liu S.
        • Higashida R.T.
        • Dillon W.P.
        Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management.
        AJNR Am J Neuroradiol. Jan 2006; 27: 26-34
        • Sanelli P.C.
        • Pandya A.
        • Segal A.Z.
        • et al.
        Cost-effectiveness of CT angiography and perfusion imaging for delayed cerebral ischemia and vasospasm in aneurysmal subarachnoid hemorrhage.
        AJNR Am J Neuroradiol. Sep 2014; 35: 1714-1720
        • Ivanidze J.
        • Charalel R.A.
        • Shuryak I.
        • et al.
        Effects of radiation exposure on the cost-effectiveness of CT angiography and perfusion imaging in aneurysmal subarachnoid hemorrhage.
        AJNR Am J Neuroradiol. Mar 2017; 38: 462-468
        • Horiguchi J.
        • Kiura Y.
        • Tanaka J.
        • et al.
        Feasibility of extended-coverage perfusion and dynamic computer tomography (CT) angiography using toggling-table technique on 64-slice CT.
        J Neuroradiol. Jul 2011; 38: 156-160
        • Kortman H.G.
        • Smit E.J.
        • Oei M.T.
        • Manniesing R.
        • Prokop M.
        • Meijer F.J.
        4D-CTA in neurovascular disease: a review.
        AJNR Am J Neuroradiol. Jun 2015; 36: 1026-1033
        • Aralasmak A.
        • Akyuz M.
        • Ozkaynak C.
        • Sindel T.
        • Tuncer R.
        CT angiography and perfusion imaging in patients with subarachnoid hemorrhage: correlation of vasospasm to perfusion abnormality.
        Neuroradiology. Feb 2009; 51: 85-93
        • Yoon D.Y.
        • Choi C.S.
        • Kim K.H.
        • Cho B.M.
        Multidetector-row CT angiography of cerebral vasospasm after aneurysmal subarachnoid hemorrhage: comparison of volume-rendered images and digital subtraction angiography.
        AJNR Am J Neuroradiol. Feb 2006; 27: 370-377
        • Gagnon R.C.
        • Peterson J.J.
        Estimation of confidence intervals for area under the curve from destructively obtained pharmacokinetic data.
        J Pharmacokinet Biopharm. Feb 1998; 26: 87-102
        • Letourneau-Guillon L.
        • Farzin B.
        • Darsaut T.E.
        • et al.
        Reliability of CT angiography in cerebral vasospasm: a systematic review of the literature and an inter- and intraobserver study.
        AJNR Am J Neuroradiol. Apr 2020; 41: 612-618
        • Ditz C.
        • Leppert J.
        • Neumann A.
        • et al.
        Cerebral vasospasm after spontaneous subarachnoid hemorrhage: angiographic pattern and its impact on the clinical course.
        World Neurosurg. Jun 2020; 138: e913-e921
        • Mir D.I.A.
        • Gupta A.
        • Dunning A.
        • et al.
        CT perfusion for detection of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis.
        AJNR Am J Neuroradiol. May 2014; 35: 866-871
        • Murphy A.
        • Lee T.Y.
        • Marotta T.R.
        • et al.
        Prospective multicenter study of changes in MTT after aneurysmal SAH and relationship to delayed cerebral ischemia in patients with good- and poor-grade admission status.
        Am J Neuroradiol. 2018; 39: 2027-2033
        • Wilson C.D.
        • Shankar J.J.S.
        Diagnosing vasospasm after subarachnoid hemorrhage: CTA and CTP.
        Can J Neurol Sci. 2014; 41: 314-319
        • Fragata I.
        • Alves M.
        • Papoila A.L.
        • Diogo M.
        • Canhão P.
        • Canto-Moreira N.
        Temporal evolution of cerebral computed tomography perfusion after acute subarachnoid hemorrhage: a prospective cohort study.
        Acta Radiol. 2020; 61: 376-385
        • Omoto K.
        • Nakagawa I.
        • Nishimura F.
        • Yamada S.
        • Motoyama Y.
        • Nakase H.
        Computed tomography perfusion imaging after aneurysmal subarachnoid hemorrhage can detect cerebral vasospasm and predict delayed cerebral ischemia after endovascular treatment.
        Surg Neurol Int. 2020; 11: 233
        • Neulen A.
        • Kunzelmann S.
        • Kosterhon M.
        • et al.
        Automated grading of cerebral vasospasm to standardize computed tomography angiography examinations after subarachnoid hemorrhage.
        Front Neurol. 2020; 11: 13
        • Hoang J.K.
        • Wang C.
        • Frush D.P.
        • et al.
        Estimation of radiation exposure for brain perfusion CT: standard protocol compared with deviations in protocol.
        AJR Am J Roentgenol. Nov 2013; 201: W730-W734
        • Brenner D.J.
        • Hall E.J.
        Computed tomography–an increasing source of radiation exposure.
        N Engl J Med. 2007; 357: 2277-2284
        • Atci I.B.
        • Yilmaz H.
        • Antar V.
        • et al.
        What do we know about ALARA? Is our knowledge sufficient about radiation safety?.
        J Neurosurg Sci. Dec 2017; 61: 597-602
        • Davenport M.S.
        • Perazella M.A.
        • Yee J.
        • et al.
        Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation.
        Radiology. Mar 2020; 294: 660-668
        • Hu Z.
        • Shang T.
        • Huang R.
        • et al.
        Renal safety of intra-arterial treatment after acute ischemic stroke with multimodal CT imaging selection.
        J Stroke Cerebrovasc Dis. Jul 2019; 28: 2031-2037
        • Josephson S.A.
        • Dillon W.P.
        • Smith W.S.
        Incidence of contrast nephropathy from cerebral CT angiography and CT perfusion imaging.
        Neurology. 2005; 64: 1805-1806