Advertisement

Deep learning takes the pain out of back breaking work - Automatic vertebral segmentation and attenuation measurement for osteoporosis

      Highlights

      • Attenuation values can be obtained from vertebrae using a convolutional neural network.
      • An automated, deep learning-based approach matches results of previous studies.
      • Artificial Intelligence could be used for opportunistic osteoporosis screening.

      Abstract

      Background

      Osteoporosis is an underdiagnosed and undertreated disease worldwide. Recent studies have highlighted the use of simple vertebral trabecular attenuation values for opportunistic osteoporosis screening. Meanwhile, machine learning has been used to accurately segment large parts of the human skeleton.

      Purpose

      To evaluate a fully automated deep learning-based method for lumbar vertebral segmentation and measurement of vertebral volumetric trabecular attenuation values.

      Material and methods

      A deep learning-based method for automated segmentation of bones was retrospectively applied to non-contrast CT scans of 1008 patients (mean age 57 years, 472 female, 536 male). Each vertebral segmentation was automatically reduced by 7 mm in all directions in order to avoid cortical bone. The mean and median volumetric attenuation values from Th12 to L4 were obtained and plotted against patient age and sex. L1 values were further analyzed to facilitate comparison with previous studies.

      Results

      The mean L1 attenuation values decreased linearly with age by −2.2 HU per year (age > 30, 95% CI: −2.4, −2.0, R2 = 0.3544). The mean L1 attenuation value of the entire population cohort was 140 HU ± 54.

      Conclusions

      With results closely matching those of previous studies, we believe that our fully automated deep learning-based method can be used to obtain lumbar volumetric trabecular attenuation values which can be used for opportunistic screening of osteoporosis in patients undergoing CT scans for other reasons.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Delmas P.D.
        • Van Langerijt L.
        • De Watts N.B.
        • Eastell R.
        • Genant H.
        • Grauer A.
        • et al.
        Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study.
        J Bone Miner Res. 2005; 20: 557-563https://doi.org/10.1359/JBMR.041214
        • Kanis J.A.
        • Johnell O.
        Requirements for DXA for the management of osteoporosis in Europe.
        Osteoporos Int. 2005; 16: 229-238https://doi.org/10.1007/s00198-004-1811-2
        • Miller P.D.
        Underdiagnoses and undertreatment of osteoporosis: the battle to be won.
        J Clin Endocrinol Metab. 2016; 101: 852-859https://doi.org/10.1210/jc.2015-3156
        • Ballane G.
        • Cauley J.A.
        • Luckey M.M.
        • El-Hajj Fuleihan G.
        Worldwide prevalence and incidence of osteoporotic vertebral fractures.
        Osteoporos Int. 2017; 28: 1531-1542https://doi.org/10.1007/s00198-017-3909-3
        • Hernlund E.
        • Svedbom A.
        • Ivergård M.
        • Compston J.
        • Cooper C.
        • Stenmark J.
        Osteoporosis in the European Union: Medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA)..
        Arch Osteoporos. 2013; : 8https://doi.org/10.1007/s11657-013-0136-1
        • Jang S.
        • Graffy P.M.
        • Ziemlewicz T.J.
        • Lee S.J.
        • Summers R.M.
        • Pickhardt P.J.
        Opportunistic osteoporosis screening at routine abdominal and thoracic CT: normative L1 trabecular attenuation values in more than 20 000 adults.
        Radiology. 2019; 181648https://doi.org/10.1148/radiol.2019181648
        • Hendrickson N.R.
        • Pickhardt P.J.
        • Del Rio A.M.
        • Rosas H.G.
        • Anderson P.A.
        Bone mineral density T-scores derived from CT attenuation numbers (Hounsfield Units): clinical utility and correlation with dual-energy X-ray absorptiometry.
        Iowa Orthop J. 2018; 38: 25-31
        • Wilczek M.L.
        • Kälvesten J.
        • Algulin J.
        • Beiki O.
        • Brismar T.B.
        Digital X-ray radiogrammetry of hand or wrist radiographs can predict hip fracture risk - a study in 5,420 women and 2,837 men.
        Eur Radiol. 2013; 23: 1383-1391https://doi.org/10.1007/s00330-012-2706-9
        • Pickhardt P.J.
        • Pooler B.D.
        • Lauder T.
        • del Rio A.M.
        • Bruce R.J.
        • Binkley N.
        Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications.
        Ann Intern Med. 2013; 158: 588-595https://doi.org/10.7326/0003-4819-158-8-201304160-00003
        • Buckens C.F.
        • Dijkhuis G.
        • de Keizer B.
        • Verhaar H.J.
        • de Jong P.A.
        Opportunistic screening for osteoporosis on routine computed tomography? An external validation study.
        Eur Radiol. 2015; 25: 2074-2079https://doi.org/10.1007/s00330-014-3584-0
        • Patel S.P.
        • Lee J.J.
        Normative vertebral hounsfield unit values and correlation with bone mineral density.
        J Clin Exp Orthop. 2016; 02: 1-7https://doi.org/10.4172/2471-8416.100014
        • Lee S.J.
        • Pickhardt P.J.
        Opportunistic screening for osteoporosis using body CT scans obtained for other indications: the UW experience.
        Clin Rev Bone Miner Metab. 2017; 15: 128-137https://doi.org/10.1007/s12018-017-9235-7
        • Pickhardt P.J.
        • Lee S.J.
        • Liu J.
        • Yao J.
        • Lay N.
        • Graffy P.M.
        • et al.
        Population-based opportunistic osteoporosis screening: validation of a fully automated CT tool for assessing longitudinal BMD changes.
        Br J Radiol. 2018; 92: 20180726https://doi.org/10.1259/bjr.20180726
        • Forsberg D.
        • Sjöblom E.
        • Sunshine J.L.
        Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data.
        J Digit Imaging. 2017; 30: 406-412https://doi.org/10.1007/s10278-017-9945-x
        • Lessmann N.
        • van Ginneken B.
        • de Jong P.A.
        • Išgum I.
        Iterative fully convolutional neural networks for automatic vertebra segmentation and identification.
        Med Image Anal. 2019; 53: 142-155https://doi.org/10.1016/j.media.2019.02.005
        • Trägårdh E.
        • Borrelli P.
        • Kaboteh R.
        • Gillberg T.
        • Ulén J.
        • Enqvist O.
        RECOMIA—a cloud-based platform for artificial intelligence research in nuclear medicine and radiology.
        EJNMMI Phys. 2020; : 7https://doi.org/10.1186/s40658-020-00316-9
        • Lindgren Belal S.
        • Sadik M.
        • Kaboteh R.
        • Enqvist O.
        • Ulén J.
        • Poulsen M.H.
        • et al.
        Deep learning for segmentation of 49 selected bones in CT scans: first step in automated PET/CT-based 3D quantification of skeletal metastases.
        Eur J Radiol. 2019; 113: 89-95https://doi.org/10.1016/j.ejrad.2019.01.028
        • Kingma D.P.
        • Adam Ba J.L.
        A method for stochastic optimization.
        in: 3rd int conf learn represent ICLR 2015 - conf track proc. 2015: 1-15
        • Yasaka K.
        • Akai H.
        • Kunimatsu A.
        • Kiryu S.
        • Abe O.
        Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network.
        Eur Radiol. 2020; 30: 3549-3557https://doi.org/10.1007/s00330-020-06677-0
        • Ferizi U.
        • Honig S.
        • Chang G.
        Artificial intelligence, osteoporosis and fragility fractures.
        Curr Opin Rheumatol. 2019; 31: 368-375https://doi.org/10.1097/BOR.0000000000000607
        • Valentinitsch A.
        • Trebeschi S.
        • Kaesmacher J.
        • Lorenz C.
        • Löffler M.T.
        • Zimmer C.
        • et al.
        Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures.
        Osteoporos Int. 2019; 30: 1275-1285https://doi.org/10.1007/s00198-019-04910-1
        • Pan Y.
        • Shi D.
        • Wang H.
        • Chen T.
        • Cui D.
        • Cheng X.
        • et al.
        Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening.
        Eur Radiol. 2020; 30: 4107-4116https://doi.org/10.1007/s00330-020-06679-y
        • Tomita N.
        • Cheung Y.Y.
        • Hassanpour S.
        Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans.
        Comput Biol Med. 2018; 98: 8-15https://doi.org/10.1016/j.compbiomed.2018.05.011
        • Pickhardt P.J.
        • Graffy P.M.
        • Zea R.
        • Lee S.J.
        • Liu J.
        • Sandfort V.
        Automated abdominal CT imaging biomarkers for opportunistic prediction of future major osteoporotic fractures in asymptomatic adults.
        Radiology. 2020; 200466https://doi.org/10.1148/radiol.2020200466
        • Dagan N.
        • Elnekave E.
        • Barda N.
        • Bregman-Amitai O.
        • Bar A.
        • Orlovsky M.
        • et al.
        Automated opportunistic osteoporotic fracture risk assessment using computed tomography scans to aid in FRAX underutilization.
        Nat Med. 2020; 26: 77-82https://doi.org/10.1038/s41591-019-0720-z
        • Burns J.E.
        • Yao J.
        • Summers R.M.
        Vertebral body compression fractures and bone density: automated detection and classification on CT images.
        Radiology. 2017; 284: 788-797https://doi.org/10.1148/radiol.2017162100
        • Engelke K.
        Quantitative computed tomography—current status and new developments.
        J Clin Densitom. 2017; 20: 309-321https://doi.org/10.1016/j.jocd.2017.06.017
        • Cropp R.J.
        • Seslija P.
        • Tso D.
        • Thakur Y.
        Scanner and kVp dependence of measured CT numbers in the ACR CT phantom.
        J Appl Clin Med Phys. 2013; 14: 338-349https://doi.org/10.1120/jacmp.v14i6.4417
        • Leslie W.D.
        • Crandall C.J.
        Population-based osteoporosis primary prevention and screening for quality of care in osteoporosis. Current Osteoporosis Reports.
        Curr Osteoporos Rep. 2019; 17: 483-490https://doi.org/10.1007/s11914-019-00542-w
        • Pickhardt P.J.
        • Pooler B.D.
        • Lauder T.
        • del Rio A.M.
        • Bruce R.J.
        • Binkley N.
        Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications.
        Ann Intern Med. 2013; 158: 588https://doi.org/10.7326/0003-4819-158-8-201304160-00003
        • Graffy P.M.
        • Lee S.J.
        • Ziemlewicz T.J.
        • Pickhardt P.J.
        Prevalence of vertebral compression fractures on routine ct scans according to l1 trabecular attenuation: determining relevant thresholds for opportunistic osteoporosis screening.
        Am J Roentgenol. 2017; 209: 491-496https://doi.org/10.2214/AJR.17.17853
        • Lee S.
        • Chung C.K.
        • Oh S.H.
        • Park S.B.
        Correlation between bone mineral density measured by dual-energy X-ray absorptiometry and hounsfield units measured by diagnostic CT in lumbar spine.
        J Korean Neurosurg Soc. 2013; 54: 384-389https://doi.org/10.3340/jkns.2013.54.5.384
        • Gausden E.B.
        • Nwachukwu B.U.
        • Schreiber J.J.
        • Lorich D.G.
        • Lane J.M.
        Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review.
        J Bone Jt Surg - Am. 2017; 99: 1580-1590https://doi.org/10.2106/JBJS.16.00749
        • De Jong W.U.
        • De Jong P.A.
        • Vliegenthart R.
        • Isgum I.
        • Lammers J.W.J.
        • Oudkerk M.
        • et al.
        Association of chronic obstructive pulmonary disease and smoking status with bone density and vertebral fractures in male lung cancer screening participants.
        J Bone Miner Res. 2014; 29: 2224-2229https://doi.org/10.1002/jbmr.2248
        • Lee S.J.
        • Binkley N.
        • Lubner M.G.
        • Bruce R.J.
        • Ziemlewicz T.J.
        • Pickhardt P.J.
        Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density.
        Osteoporos Int. 2015; https://doi.org/10.1007/s00198-015-3318-4