Advertisement

Pediatric biliary disorders: Multimodality imaging evaluation with clinicopathologic correlation

      Highlights

      • Ultrasound remains the best initial modality for pediatric biliary system evaluation.
      • Imaging is central to differentiate biliary atresia from neonatal hepatitis.
      • Caroli's disease is frequently associated with renal disorders such as medullary sponge kidney.
      • Features of primary sclerosing cholangitis can overlap with autoimmune hepatitis, termed overlap syndrome.
      • Imaging can reliably detect a myriad of post-operative biliary complications.

      Abstract

      The spectrum of pathologies affecting the biliary tree in the pediatric population varies depending on the age of presentation. While in utero insults can result in an array of anatomic variants and congenital anomalies in newborns, diverse acquired biliary pathologies are observed in older children. These acquired pathologies display different presentations and consequences than adults. Multimodality imaging assessment of the pediatric biliary system is requisite to establishing an appropriate management plan. Awareness of the imaging features of the various biliary pathologies and conveying clinically actionable information is essential to facilitate appropriate patient management. In this paper, we will illustrate the anatomy and embryology of the pediatric biliary system. Then, we will provide an overview of the imaging modalities used to assess the biliary system. Finally, we will review the unique features of the pediatric biliary pathologies, complemented by histopathologic correlation and discussions of clinical management.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ando H.
        Embryology of the biliary tract.
        Dig Surg. 2010; 27: 87-89https://doi.org/10.1159/000286463
        • Puente S.G.
        • Bannura G.C.
        Radiological anatomy of the biliary tract: variations and congenital abnormalities.
        World J Surg. 1983; 7: 271-276https://doi.org/10.1007/BF01656159
        • Guelrud M.
        • Morera C.
        • Rodriguez M.
        • Prados J.G.
        • Jaen D.
        Normal and anomalous pancreaticobiliary union in children and adolescents.
        Gastrointest Endosc. 1999; 50: 189-193https://doi.org/10.1016/S0016-5107(99)70223-3
        • Hernanz-Schulman M.
        • Ambrosino M.M.
        • Freeman P.C.
        • Quinn C.B.
        Common bile duct in children: sonographic dimensions.
        Radiology. 1995; 195: 193-195https://doi.org/10.1148/radiology.195.1.7892467
        • Gwal K.
        • Bedoya M.A.
        • Patel N.
        • et al.
        Reference values of MRI measurements of the common bile duct and pancreatic duct in children.
        Pediatr Radiol. 2015; 45: 1153-1159https://doi.org/10.1007/s00247-015-3296-x
        • McGahan J.P.
        • Phillips H.E.
        • Cox K.L.
        Sonography of the normal pediatric gallbladder and biliary tract.
        Radiology. 1982; 144: 873-875https://doi.org/10.1148/radiology.144.4.7111740
        • Varley P.F.
        • Rohrmann C.A.
        • Silvis S.E.
        • Vennes J.A.
        The normal endoscopic pancreatogram.
        Radiology. 1976; 118: 295-300https://doi.org/10.1148/118.2.295
        • Gazelle G.S.
        • Lee M.J.
        • Mueller P.R.
        Cholangiographic segmental anatomy of the liver.
        Radiographics. 1994; 14: 1005-1013https://doi.org/10.1148/radiographics.14.5.7991810
        • Mortelé K.J.
        • Ros P.R.
        Anatomic variants of the biliary tree.
        Am J Roentgenol. 2001; 177: 389-394https://doi.org/10.2214/ajr.177.2.1770389
        • Mortelé K.J.
        • Rocha T.C.
        • Streeter J.L.
        • Taylor A.J.
        Multimodality imaging of pancreatic and biliary congenital anomalies.
        Radiographics. 2006; 26: 715-731https://doi.org/10.1148/rg.263055164
        • Gubernick J.A.
        • Rosenberg H.K.
        • Ilaslan H.
        • Kessler A.
        US approach to jaundice in infants and children.
        Radiographics. 2000; 20: 173-195https://doi.org/10.1148/radiographics.20.1.g00ja25173
        • Nievelstein R.A.J.
        • Robben S.G.F.
        • Blickman J.G.
        Hepatobiliary and pancreatic imaging in children-techniques and an overview of non-neoplastic disease entities.
        Pediatr Radiol. 2011; 41: 55-75https://doi.org/10.1007/s00247-010-1858-5
        • Griffin N.
        • Charles-Edwards G.
        • Grant L.A.
        Magnetic resonance cholangiopancreatography: the ABC of MRCP.
        Insights Imaging. 2012; 3: 11-21https://doi.org/10.1007/s13244-011-0129-9
        • Chavhan G.B.
        • Babyn P.S.
        • Manson D.
        • Vidarsson L.
        Pediatric MR cholangiopancreatography: principles, technique, and clinical applications.
        RadioGraphics. 2008; 28: 1951-1962https://doi.org/10.1148/rg.287085031
        • Delaney L.
        • Applegate K.E.
        • Karmazyn B.
        • Akisik M.F.
        • Jennings S.G.
        MR cholangiopancreatography in children: feasibility, safety, and initial experience.
        Pediatr Radiol. 2008; 38: 64-75https://doi.org/10.1007/s00247-007-0644-5
        • Tirkes T.
        • Sandrasegaran K.
        • Sanyal R.
        • et al.
        Secretin-enhanced MR cholangiopancreatography: spectrum of findings.
        Radiographics. 2013; 33: 1889-1906https://doi.org/10.1148/rg.337125014
        • Li Y.
        • Dillman J.R.
        • Anton C.G.
        • et al.
        Secretin improves visualization of nondilated pancreatic ducts in children undergoing MRCP.
        Am J Roentgenol. 2020; 214: 917-922https://doi.org/10.2214/AJR.19.21798
        • Schooler G.R.
        • Hull N.C.
        • Lee E.Y.
        Hepatobiliary MRI contrast agents: pattern recognition approach to pediatric focal hepatic lesions.
        AJR Am J Roentgenol. 2020; : 1-11https://doi.org/10.2214/AJR.19.22239
        • Ayyala R.S.
        • Anupindi S.A.
        • Gee M.S.
        • Trout A.T.
        • Callahan M.J.
        Intravenous gadolinium-based hepatocyte-specific contrast agents (HSCAs) for contrast-enhanced liver magnetic resonance imaging in pediatric patients: what the radiologist should know.
        Pediatr Radiol. 2019; 49: 1256-1268https://doi.org/10.1007/s00247-019-04476-4
        • Seale M.K.
        • Catalano O.A.
        • Saini S.
        • Hahn P.F.
        • Sahani D.V.
        Hepatobiliary-specific MR contrast agents: role in imaging the liver and biliary tree.
        Radiographics. 2009; 29: 1725-1748https://doi.org/10.1148/rg.296095515
        • Frydrychowicz A.
        Review of hepatobiliary contrast agents: current applications and challenges.
        Clin Liver Dis. 2018; 11: 22-26https://doi.org/10.1002/cld.688
        • Kwatra N.
        • Shalaby-Rana E.
        • Narayanan S.
        • Mohan P.
        • Ghelani S.
        • Majd M.
        Phenobarbital-enhanced hepatobiliary scintigraphy in the diagnosis of biliary atresia: two decades of experience at a tertiary center.
        Pediatr Radiol. 2013; 43: 1365-1375https://doi.org/10.1007/s00247-013-2704-3
      1. Tulchinsky M, Ciak BW, Delbeke D, Hilson A, Holes-Lewis KA, Stabin MG, et al. SNM practice guideline for hepatobiliary scintigraphy 4.0* n.d. doi: https://doi.org/10.2967/jnmt.110.082289.

        • Kianifar H.R.
        • Tehranian S.
        • Shojaei P.
        • et al.
        Accuracy of hepatobiliary scintigraphy for differentiation of neonatal hepatitis from biliary atresia: systematic review and meta-analysis of the literature.
        Pediatr Radiol. 2013; 43: 905-919https://doi.org/10.1007/s00247-013-2623-3
        • Bassett M.D.
        • Murray K.F.
        Biliary atresia: recent progress.
        J Clin Gastroenterol. 2008; 42: 720-729https://doi.org/10.1097/MCG.0b013e3181646730
        • Hartley J.L.
        • Davenport M.
        • Kelly D.A.
        Biliary atresia.
        Lancet. 2009; 374: 1704-1713https://doi.org/10.1016/S0140-6736(09)60946-6
      2. Klein Moreira R, Cabral R, Cowles RA, Lobritto SJ. Biliary atresia a multidisciplinary approach to diagnosis and management n.d. doi: https://doi.org/10.5858/arpa.2011-0623-RA.

        • Fawaz R.
        • Baumann U.
        • Ekong U.
        • et al.
        Guideline for the evaluation of cholestatic jaundice in infants: joint recommendations of the North American society for pediatric gastroenterology, hepatology, and nutrition and the European society for pediatric gastroenterology, hepatology, and nutrition.
        J Pediatr Gastroenterol Nutr. 2017; 64: 154-168https://doi.org/10.1097/MPG.0000000000001334
        • Zhou L.
        • Wang W.
        • Shan Q.
        • et al.
        Optimizing the US diagnosis of biliary atresia with a modified triangular cord thickness and gallbladder classification.
        Radiology. 2015; 277: 181-191https://doi.org/10.1148/radiol.2015142309
        • Kanegawa K.
        • Akasaka Y.
        • Kitamura E.
        • et al.
        Sonographic diagnosis of biliary atresia in pediatric patients using the “triangular cord” sign versus gallbladder length and contraction.
        Am J Roentgenol. 2003; 181: 1387-1390https://doi.org/10.2214/ajr.181.5.1811387
        • Shamir S.B.
        • Kurian J.
        • Kogan-Liberman D.
        • Taragin B.H.
        Hepatic imaging in neonates and young infants: state of the art.
        Radiology. 2017; 285: 763-777https://doi.org/10.1148/radiol.2017170305
        • Anand S.S.
        • Handa R.K.
        • Singh J.
        • Sinha I.
        Hepato-biliary scintigraphy in diagnosis of biliary atresia.
        Med J Armed Forces India. 2006; 62: 20-21https://doi.org/10.1016/S0377-1237(06)80146-2
        • Russo P.
        • Magee J.C.
        • Anders R.A.
        • et al.
        Key histopathologic features of liver biopsies that distinguish biliary atresia from other causes of infantile cholestasis and their correlation with outcome: a multicenter study.
        Am J Surg Pathol. 2016; 40: 1601-1615https://doi.org/10.1097/PAS.0000000000000755
        • Zhou L.-Y.
        • Guan B.-Y.
        • Li L.
        • et al.
        Objective differential characteristics of cystic biliary atresia and choledochal cysts in neonates and young infants.
        J Ultrasound Med. 2012; 31: 833-841https://doi.org/10.7863/jum.2012.31.6.833
        • Kasai M.
        A new operation for “non-correctable” biliary atresia: hepatic portoenterostomy.
        Shujutsu. 1959; 13: 733-739
        • Schreiber R.A.
        • Barker C.C.
        • Roberts E.A.
        • et al.
        Biliary atresia: the Canadian experience.
        J Pediatr. 2007; : 151https://doi.org/10.1016/j.jpeds.2007.05.051
        • Superina R.
        • Magee J.C.
        • Brandt M.L.
        • et al.
        The anatomic pattern of biliary atresia identified at time of Kasai hepatoportoenterostomy and early postoperative clearance of jaundice are significant predictors of transplant-free survival.
        Ann Surg. 2011; 254: 577-585https://doi.org/10.1097/SLA.0b013e3182300950
      3. Biliary atresia - UpToDate n.d. https://www.uptodate.com/contents/biliary-atresia#H7032584 (accessed April 7, 2020).

        • Kamath B.M.
        • Schwarz K.B.
        • Hadžić N.
        Alagille syndrome and liver transplantation.
        J Pediatr Gastroenterol Nutr. 2010; 50: 11-15https://doi.org/10.1097/MPG.0b013e3181c1601f
        • Subramaniam P.
        • Knisely A.
        • Portmann B.
        • et al.
        Diagnosis of alagille syndrome-25 years of experience at King’s College Hospital.
        J Pediatr Gastroenterol Nutr. 2011; 52: 84-89https://doi.org/10.1097/MPG.0b013e3181f1572d
        • Kaye A.J.
        • Rand E.B.
        • Munoz P.S.
        • Spinner N.B.
        • Flake A.W.
        • Kamath B.M.
        Effect of Kasai procedure on hepatic outcome in alagille syndrome.
        J Pediatr Gastroenterol Nutr. 2010; 51: 319-321https://doi.org/10.1097/MPG.0b013e3181df5fd8
        • Han S.
        • Jeon T.Y.
        • Hwang S.M.
        • et al.
        Imaging findings of Alagille syndrome in young infants: differentiation from biliary atresia.
        Br J Radiol. 2017; 90https://doi.org/10.1259/bjr.20170406
        • Mitchell E.
        • Gilbert M.
        • Loomes K.M.
        Alagille syndrome.
        Clin Liver Dis. 2018; 22: 625-641https://doi.org/10.1016/j.cld.2018.06.001
        • Nasu K.
        • Matsuki S.
        • Kawano Y.
        • Miyakawa I.
        • Nakashima K.
        • Anai H.
        Choledochal cyst diagnosed and conservatively treated during pregnancy.
        Am J Perinatol. 2004; 21: 463-468https://doi.org/10.1055/s-2004-835963
        • Tadokoro H.
        • Takase M.
        • Nobukawa B.
        Development and congenital anomalies of the pancreas.
        Anat Res Int. 2011; 2011
        • Rozel C.
        • Garel L.
        • Rypens F.
        • et al.
        Imaging of biliary disorders in children.
        Pediatr Radiol. 2011; 41: 208-220https://doi.org/10.1007/s00247-010-1829-x
        • Todani T.
        • Watanabe Y.
        • Narusue M.
        • Tabuchi K.
        • Okajima K.
        Congenital bile duct cysts. Classification, operative procedures, and review of thirty-seven cases including cancer arising from choledochal cyst.
        Am J Surg. 1977; 134: 263-269https://doi.org/10.1016/0002-9610(77)90359-2
        • Todani T.
        • Watanabe Y.
        • Toki A.
        • Morotomi Y.
        Classification of congenital biliary cystic disease: special reference to type Ic IV A cysts with primary ductal stricture.
        J Hepatobiliary Pancreat Surg. 2003; 10: 340-344https://doi.org/10.1007/s00534-002-0733-7
        • Ragot E.
        • Mabrut J.-Y.
        • Ouaïssi M.
        • et al.
        Pancreaticobiliary maljunctions in European patients with bile duct cysts: results of the multicenter study of the French Surgical Association (AFC).
        World J Surg. 2017; 41: 538-545https://doi.org/10.1007/s00268-016-3684-x
        • Song H.K.
        • Kim M.H.
        • Myung S.J.
        • et al.
        Choledochal cyst associated the with anomalous union of pancreaticobiliary duct (AUPBD) has a more grave clinical course than choledochal cyst alone.
        Korean J Intern Med. 1999; 14: 1-8https://doi.org/10.3904/kjim.1999.14.2.1
        • Khalefa A.A.
        • Alrasheed M.
        • Bin Saeedan M.
        Central dot sign.
        Abdom Radiol. 2016; 41: 2289-2290https://doi.org/10.1007/s00261-016-0836-2
        • Brancatelli G.
        • Federle M.P.
        • Vilgrain V.
        • Vullierme M.P.
        • Marin D.
        • Lagalla R.
        Fibropolycystic liver disease: CT and MR imaging findings.
        Radiographics. 2005; 25: 659-670https://doi.org/10.1148/rg.253045114
        • Coley B.D.
        Caffey’s pediatric diagnostic imaging E-book.
        Elsevier Health Sciences, 2013
      4. Principe A, Lugaresi ML, Lords RC, D'Errico A, Polito E, Gallö MC, et al. Bile duct hamartomas: diagnostic problems and treatment. Hepatogastroenterology n.d.;44:994–7.

        • Santiago I.
        • Loureiro R.
        • Curvo-Semedo L.
        • et al.
        Congenital cystic lesions of the biliary tree.
        Am J Roentgenol. 2012; 198: 825-835https://doi.org/10.2214/AJR.11.7294
        • Frybova B.
        • Drabek J.
        • Lochmannova J.
        • et al.
        Cholelithiasis and choledocholithiasis in children; risk factors for development.
        PLoS One. 2018; 13https://doi.org/10.1371/journal.pone.0196475
        • Reif S.
        • Sloven D.G.
        • Lebenthal E.
        Gallstones in children: characterization by age, etiology, and outcome.
        Am J Dis Child. 1991; 145: 105-108https://doi.org/10.1001/archpedi.1991.02160010111028
        • Franklin A.L.
        • Qureshi F.G.
        • Nadler E.P.
        Management of gallstones in the pediatric patient.
        in: Acute Cholecystitis. Springer International Publishing, 2015: 197-206https://doi.org/10.1007/978-3-319-14824-3_16
        • Kumar R.
        • Nguyen K.
        • Shun A.
        Gallstones and common bile duct calculi in infancy and childhood.
        Aust N Z J Surg. 2000; 70: 188-191https://doi.org/10.1046/j.1440-1622.2000.01783.x
        • Herzog D.
        • Bouchard G.
        High rate of complicated idiopathic gallstone disease in pediatric patients of a North American tertiary care center.
        World J Gastroenterol. 2008; 14: 1544-1548https://doi.org/10.3748/wjg.14.1544
        • Walker T.M.
        • Serjeant G.R.
        Biliary sludge in sickle cell disease.
        J Pediatr. 1996; 129: 443-445https://doi.org/10.1016/S0022-3476(96)70079-3
        • Herzog D.
        • WJG GB-W journal of gastroenterology
        High rate of complicated idiopathic gallstone disease in pediatric patients of a North American tertiary care center. NcbiNlmNihGov n.d.
        2008 (undefined)
        • ACA Tannuri
        • Leal A.J.G.
        • Velhote M.C.P.
        • MEP Gonlçalves
        • Tannuri U.
        Management of gallstone disease in children: a new protocol based on the experience of a single center.
        J Pediatr Surg. 2012; 47: 2033-2038https://doi.org/10.1016/j.jpedsurg.2012.06.010
        • Kochar R.
        • Banerjee S.
        Infections of the biliary tract.
        Gastrointest Endosc Clin N Am. 2013; 23: 199-218https://doi.org/10.1016/j.giec.2012.12.008
        • Eun H.W.
        • Kim J.H.
        • Hong S.S.
        • Kim Y.J.
        Assessment of acute cholangitis by MR imaging.
        Eur J Radiol. 2012; 81: 2476-2480https://doi.org/10.1016/j.ejrad.2011.10.020
        • Mosler P.
        Diagnosis and management of acute cholangitis.
        Curr Gastroenterol Rep. 2011; 13: 166-172https://doi.org/10.1007/s11894-010-0171-7
        • Chapman R.
        • Fevery J.
        • Kalloo A.
        • et al.
        Diagnosis and management of primary sclerosing cholangitis.
        Hepatology. 2010; 51: 660-678https://doi.org/10.1002/hep.23294
        • Kaplan G.G.
        • Laupland K.B.
        • Butzner D.
        • Urbanski S.J.
        • Lee S.S.
        The burden of large and small duct primary sclerosing cholangitis in adults and children: a population-based analysis.
        Am J Gastroenterol. 2007; 102: 1042-1049https://doi.org/10.1111/j.1572-0241.2007.01103.x
        • Mertz A.
        • Nguyen N.A.
        • Katsanos K.H.
        • Kwok R.M.
        Primary sclerosing cholangitis and inflammatory bowel disease comorbidity: an update of the evidence.
        Ann Gastroenterol. 2019; 32: 124-133https://doi.org/10.20524/aog.2019.0344
        • Alexopoulou E.
        • Xenophontos P.E.
        • Economopoulos N.
        • et al.
        Investigative MR cholangiopancreatography for primary sclerosing cholangitis–type lesions in children with IBD.
        J Pediatr Gastroenterol Nutr. 2012; 55: 308-313https://doi.org/10.1097/MPG.0b013e31825bb3dc
        • Khoshpouri P.
        • Habibabadi R.R.
        • Hazhirkarzar B.
        • et al.
        Imaging features of primary sclerosing cholangitis: from diagnosis to liver transplant follow-up.
        RadioGraphics. 2019; 39: 1938-1964https://doi.org/10.1148/rg.2019180213
        • Tenca A.
        • Färkkilä M.
        • Arola J.
        • Jaakkola T.
        • Penagini R.
        • Kolho K.L.
        Clinical course and prognosis of pediatric-onset primary sclerosing cholangitis.
        United Eur Gastroenterol J. 2016; 4: 562-569https://doi.org/10.1177/2050640615616012
        • Björnsson E.
        • Angulo P.
        Cholangiocarcinoma in young individuals with and without primary sclerosing cholangitis.
        Am J Gastroenterol. 2007; 102: 1677-1682https://doi.org/10.1111/j.1572-0241.2007.01220.x
        • Dyson J.K.
        • Beuers U.
        • Jones D.E.J.
        • Lohse A.W.
        • Hudson M.
        Primary sclerosing cholangitis.
        Lancet. 2018; 391: 2547-2559https://doi.org/10.1016/S0140-6736(18)30300-3
        • Laborda T.J.
        • Jensen M.K.
        • Kavan M.
        • Deneau M.
        Treatment of primary sclerosing cholangitis in children.
        World J Hepatol. 2019; 11: 19-36https://doi.org/10.4254/wjh.v11.i1.19
        • Nakayuenyongsuk W.
        • Choudry H.
        • Yeung K.A.
        • Karnsakul W.
        Decision-making patterns in managing children with suspected biliary dyskinesia.
        World J Clin Pediatr. 2017; 6: 124https://doi.org/10.5409/wjcp.v6.i2.124
        • Carney D.E.
        • Kokoska E.R.
        • Grosfeld J.L.
        • et al.
        Predictors of successful outcome after cholecystectomy for biliary dyskinesia.
        J Pediatr Surg. 2004; 39: 813-816https://doi.org/10.1016/j.jpedsurg.2004.02.017
        • Gauthier F.
        • Brunelle F.
        • Valayer J.
        Common channel for bile and pancreatic ducts. Presentation of 12 cases and discussion.
        Chir Pediatr. 1986; 27: 148-152
        • Din S.A.
        • Naimi I.
        • Beg M.
        Sphincter of Oddi dysfunction: a perplexing presentation.
        Case Rep Gastroenterol. 2016; 10: 714-719https://doi.org/10.1159/000452736
        • Varadarajulu S.
        • Wilcox C.M.
        Endoscopic management of sphincter of oddi dysfunction in children.
        J Pediatr Gastroenterol Nutr. 2006; 42: 526-530https://doi.org/10.1097/01.mpg.0000221891.21254.a2
        • Boraschi P.
        • Donati F.
        Postoperative biliary adverse events following orthotopic liver transplantation: assessment with magnetic resonance cholangiography.
        World J Gastroenterol. 2014; 20: 11080-11094https://doi.org/10.3748/wjg.v20.i32.11080
        • Horvat N.
        • Marcelino A.S.Z.
        • Horvat J.V.
        • et al.
        Pediatric liver transplant: techniques and complications.
        RadioGraphics. 2017; 37: 1612-1631https://doi.org/10.1148/rg.2017170022
        • Kling K.
        • Lau H.
        • Colombani P.
        Biliary complications of living related pediatric liver transplant patients.
        Pediatr Transplant. 2004; 8: 178-184https://doi.org/10.1046/j.1399-3046.2003.00127.x
        • Zoepf T.
        • Maldonado-Lopez E.J.
        • Hilgard P.
        • et al.
        Diagnosis of biliary strictures after liver transplantation: which is the best tool?.
        World J Gastroenterol. 2005; 11: 2945-2948https://doi.org/10.3748/wjg.v11.i19.2945
        • Pavone P.
        • Laghi A.
        • Catalano C.
        • et al.
        MR cholangiography in the examination of patients with biliary-enteric anastomoses.
        Am J Roentgenol. 1997; 169: 807-811https://doi.org/10.2214/ajr.169.3.9275901
        • Greif F.
        • Bronsther O.L.
        • Van Thiel D.H.
        • et al.
        The incidence, timing, and management of biliary tract complications after orthotopic liver transplantation.
        Ann Surg. 1994; 219: 40-45https://doi.org/10.1097/00000658-199401000-00007
        • Feier F.H.
        • Chapchap P.
        • Pugliese R.
        • et al.
        Diagnosis and management of biliary complications in pediatric living donor liver transplant recipients.
        Liver Transpl. 2014; 20: 882-892https://doi.org/10.1002/lt.23896