Advertisement

A specific biomarker for amyotrophic lateral sclerosis: Quantitative susceptibility mapping

      Highlights

      • Motor cortex quantitative susceptibility values were significantly higher in ALS patients compared to patients without motor neuron symptoms.
      • Significantly higher motor cortex quantitative susceptibility values were found in ALS patients compared to patients with diseases mimicking ALS.
      • Measurements along the hand homunculus showed 100% specificity in differentiating ALS from mimics.
      • Quantitative susceptibility mapping has a diagnostic role in differentiating ALS from disease mimics.

      Abstract

      Objective

      Accurate and timely diagnosis of amyotrophic lateral sclerosis (ALS) is a diagnostic challenge given the lack of specific diagnostic and imaging biomarkers as well as the significant clinic overlap with mimic syndromes. We hypothesize that MR quantitative susceptibility mapping (QSM) can help differentiate ALS from mimic diagnoses.

      Methods

      In a blinded retrospective study of MRIs with QSM from 2015 to 2018, we compared motor cortex susceptibility along the hand and face homunculi in ALS patients and patients with similar clinical presentations. Inclusion required a confirmed ALS or a mimic diagnosis. Comparative groups included age-matched patients with MRIs performed for non-motor neuron symptoms that were reported as normal or demonstrated leukoaraiosis. Quantitative susceptibility values were compared with ANOVA and Tukey-Kramer (post-hoc). ROC analysis and Youden's index were used to identify optimal cutoff values.

      Results

      Fifty ALS, 35 mimic, and 70 non-motor neuron symptom patients (35 normal, 35 leukoaraiosis) were included. Hand and face homunculus mean susceptibility values were significantly higher in the ALS group compared to the mimic (p=0.001, p=0.004), leukoaraiosis (p<0.001, p=0.003), and normal (p<0.001, p<0.001) groups. ROC curve analysis comparing ALS to mimics resulted in an area under the curve of 0.71 and 0.67 for the hand and face homunculus measurements, respectively. In differentiating ALS from mimics, Youden's index showed 100% specificity and 36% sensitivity for hand homunculus measurements.

      Conclusions

      QSM has diagnostic potential in the assessment of suspected ALS patients, demonstrating very high specificity in differentiating ALS from mimic diagnoses.

      Abbreviations:

      ALS (Amyotrophic lateral sclerosis), QSM (quantitative susceptibility mapping), PLS (primary lateral sclerosis), ROC (receiver operating characteristic), MND (motor neuron disease), ROI (region on interest), ANOVA (analysis of variance), DICOM (Digital Imaging and Communications in Medicine), PPB (parts per billion), RS (relative susceptibility), UMN (upper motor neuron)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brown R.H.
        • Phil D.
        • Al-Chalabi A.
        Amyotrophic lateral sclerosis.
        N Engl J Med. 2017; 377: 162-172
        • Nguyen H.P.
        • Broeckhoven C.V.
        • Zee J.V.D.
        ALS genes in the genomic era and their implications for FTD.
        Trends Genet. 2018; 34: 404-423
        • Beleza-Meireles A.
        • Al-Chalabi A.
        Genetic studies of amyotrophic lateral sclerosis: controversies and perspectives.
        Amyotroph Lateral Scler. 2009; 10: 1-14
        • Chio A.
        ISIS Survey: an international study on the diagnostic process and its implications in amyotrophic lateral sclerosis.
        J Neurol. 1999; 246: III/1-III/5
        • Turner M.R.
        • Kiernan M.C.
        • Leigh P.N.
        • Talbot K.
        Biomarkers in amyotrophic lateral sclerosis.
        Lancet Neurol. 2009; 8: 94-109
        • Hecht M.J.
        • Fellner F.
        • Fellner C.
        • Hilz M.J.
        • Heuss D.
        • Neundorfer B.
        MRI-FLAIR images of the head show corticospinal tract alterations in ALS patients more frequently than T2-, T1- and proton-density-weighted images.
        J Neurol Sci. 2001; 186: 37-44
        • Grosskreutz J.
        • Kaufmann J.
        • Fradrich J.
        • Dengler R.
        • Heinze H.J.
        • Peschel T.
        Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis.
        BMC Neurol. 2006; 617
        • Elis C.M.
        • Simmons A.
        • Jones D.K.
        • et al.
        Diffusion tensor MRI assesses corticospinal tract damage in ALS.
        Neurology. 1999; 53: 1051-1058
        • Wang S.
        • Poptani H.
        • Woo J.H.
        • et al.
        Amyotrophic lateral sclerosis: diffusion-tensor imaging and chemical shift MR imaging at 3.0 T.
        Radiology. 2006; 239: 831-838
        • Weidman E.K.
        • Schweitzer A.D.
        • Niogi S.N.
        • et al.
        Diffusion tensor imaging and quantitative susceptibility mapping as diagnostic tools for motor neuron disorders.
        Clin Imaging. 2019; 53: 6-11
        • Agosta F.
        • Pagani E.
        • Petrolini M.
        • et al.
        MRI predictors of long-term evaluation in amyotrophic lateral sclerosis.
        Eur J Neurosci. 2010; 32: 1490-1496
        • Ellis C.M.
        • Simmons A.
        • Andrews C.
        • Dawson J.M.
        • Williams S.C.
        • Leigh P.N.
        A proton magnetic resonance spectroscopic study in ALS: correlation with clinical findings.
        Neurology. 1998; 51: 1104-1109
        • Govind V.
        • Sharma K.R.
        • Maudsley A.A.
        • Arheart K.L.
        • Saigal G.
        • Sheriff S.
        Comprehensive evaluation of corticospinal tract metabolites in amyotrophic lateral sclerosis using wholebrain 1H MR spectroscopy.
        PLoS One. 2012; 7e35607
        • Lulé D.
        • Ludolph A.C.
        • Kassubek J.
        MRI-based functional neuroimaging in ALS: an update.
        Amyotroph Lateral Scler. 2009; 10: 258-268
        • Rule R.R.
        • Schuff N.
        • Miller R.G.
        • Weiner M.W.
        Gray matter perfusion correlates with disease severity in ALS.
        Neurology. 2010; 74: 821-827
        • Ferraro P.M.
        • Agosta F.
        • Riva N.
        • et al.
        Multimodal structural MRI in the diagnosis of motor neuron diseases.
        Neuroimage Clin. 2017; 16: 240-247
        • Oba H.
        • Araki T.
        • Ohtomo K.
        • et al.
        Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging.
        Radiology. 1993; 189: 843-846
        • Kwan J.Y.
        • Jeong S.Y.
        • Van Gelderen P.
        • et al.
        Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 Tesla MRI and pathology.
        PLoS One. 2012; 7e35241
        • Ignjatović A.
        • Stević Z.
        • Lavrnić S.
        • Daković M.
        • Bačić G.
        Brain iron MRI: a biomarker for amyotrophic lateral sclerosis.
        J Magn Reson Imaging. 2013; 38: 1472-1479
        • Mehta V.
        • Pei W.
        • Yang G.
        • et al.
        Iron is a sensitive biomarker for inflammation in multiple sclerosis.
        PLoS One. 2013; 8e57573
        • Geloso M.C.
        • Corvino V.
        • Marchese E.
        • Alessia S.
        • Michetti F.
        • D’Ambrosi N.
        The dual role of microglia in ALS: mechanisms and therapeutic approaches.
        Front Aging Neurosci. 2017; 9: 1-10
        • Wang Y.
        • Spincemaille P.
        • Liu Z.
        • et al.
        Clinical quantitative susceptibility mapping (QSM): biometal imaging and its emerging roles in patient care.
        J Magn Reson Imaging. 2017; 46: 951-971
        • Langkammer C.
        • Schweser F.
        • Krebs N.
        • et al.
        Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study.
        Neuroimage. 2012; 62: 1593-1599
        • Schweitzer A.D.
        • Liu T.
        • Gupta A.
        • et al.
        Quantitative susceptibility mapping of the motor cortex in amyotrophic lateral sclerosis and primary lateral sclerosis.
        AJR. 2015; 204: 1086-1092
        • Lee J.K.
        • Lee Y.J.
        • Park D.W.
        • et al.
        Quantitative susceptibility mapping of the motor cortex: a comparison of susceptibility among patients with amyotrophic lateral sclerosis, cerebrovascular disease, and healthy controls.
        Neuroradiology. 2017; 59 (Dec): 1213-1222
        • Acosta-Cabronero J.
        • Machts J.
        • Schreiber S.
        • et al.
        Quantitative susceptibility MRI to detect brain iron in amyotrophic lateral sclerosis.
        Radiology. 2018; 289 (Oct): 195-203
        • Costagli M.
        • Donatelli G.
        • Biagi L.
        • et al.
        Magnetic susceptibility in the deep layers of the primary cortex.
        NeuroImage: Clinical. 2016; 12: 965-969
        • Brooks B.R.
        El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors.
        J Neurol Sci. 1994; : 96-107
        • Ludolph A.
        • Drory V.
        • Hardiman O.
        • et al.
        A revision of the El Escorial criteria - 2015.
        Amyo Lat Scler and Fronto Degen. 2015; 16: 291-292
        • Fazekas F.
        • Chawluk J.B.
        • Alavi A.
        • Hurtig H.I.
        • Zimmerman R.A.
        MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging.
        AJNR. 1987; 149: 351-356
        • Liu T.
        • Wisnieff C.
        • Lou M.
        • Chen W.
        • Spincemaille P.
        • Wang Y.
        Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping.
        Magn Reson Med. 2013; 69: 467-476
        • Rohrer J.D.
        • Isaacs A.M.
        • Mizielinska S.
        • et al.
        C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis.
        Lancet Neurol. 2015; 14 (Mar): 291-301
        • Saeed M.
        • Yang Y.
        • Deng H.X.
        • et al.
        Age and founder effect of SOD1 A4V mutation causing ALS.
        Neurology. 2009; 72 (May): 1634-1639
        • Blauw H.M.
        • Barnes C.P.
        • van Vaught P.W.J.
        • et al.
        SMN1 gene duplications are associated with sporadic ALS.
        Neurology. 2012; 78 (Mar): 776-780
        • Bede P.
        • Hardiman O.
        Lessons of ALS: pitfalls and further directions – a critical review.
        NeuroImage: Clinical. 2014; 4: 436-443
        • Chio A.
        • Logroscino G.
        • Hardiman O.
        • et al.
        Prognostic factors in ALS: a critical review.
        ALS. 2009; 10: 310-323
        • Hudson A.J.
        Amyotrophic lateral sclerosis and its association with dementia, parkinsonism and other neurological disorders: a review.
        Brain. 1981; 104: 217-247
        • van Es M.A.
        • Hardiman O.
        • Chio A.
        • et al.
        Amyotrophic lateral sclerosis.
        Lancet. 2017; 390: 2084-2098
        • Liu Z.
        • Spincemaille P.
        • Yao Y.
        • Zhang Y.
        • Wang Y.
        MEDI+0 morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping.
        Magn Reson Med. 2018 May; 79: 2795-2803