Advertisement
Breast Imaging| Volume 72, P154-161, April 2021

Accuracy and inter-reader agreement of breast MRI for cancer staging using 0.08 mmol/kg of gadobutrol

Published:November 09, 2020DOI:https://doi.org/10.1016/j.clinimag.2020.11.014

      Highlights

      • Concerns on gadolinium brain deposition/retention prompted dose reduction research.
      • Preoperative breast MRI must allow for accurate tumor sizing.
      • No study evaluated MRI tumor sizing accuracy at 1.5-T with a reduced gadobutrol dose.
      • 1.5-T breast MRI with a 0.08 mmol/kg gadobutrol dose maintains high sizing accuracy.
      • Tumor sizing with 0.08 mmol/kg gadobutrol retains acceptable interreader agreement.

      Abstract

      Background

      Evidence on gadolinium brain accumulation after contrast-enhanced MRI prompted research in dose reduction.

      Purpose

      To estimate accuracy and inter-reader reproducibility of tumor size measurement in breast MRI using 0.08 mmol/kg of gadobutrol.

      Methods

      We retrospectively analyzed all women who underwent 1.5-T breast MRI for cancer staging at our department with 0.08 mmol/kg of gadobutrol. Two readers (R1 and R2, 12 and 3 years-experience) measured the largest lesion diameter. Accuracy was estimated both as correlation with pathology and rate of absolute (>5 mm) overestimation and underestimation, inter-reader reproducibility using the Bland–Altman method. Data are given as median and interquartile range.

      Results

      Thirty-six patients were analyzed (median age 56 years, 49–66) for a total of 38 lesions, 24 (63%) mass enhancement, 14 (37%) non-mass enhancement. Histopathological median size (mm) of all lesions was 15 (9–25): 13 (9–19) for mass lesions, 19 (11–39) for non-mass lesions. On MRI, R1 measured (mm) 14 (10−22) for all lesions, 13 (10–19) for mass lesions, 19 (11–49) for non-mass lesions. MRI-pathology correlation was very high for all lesion categories (ρ ≥ 0.766). On MRI, R1 overestimated lesion size in 6 cases (16%), and underestimated in 3 (8%); R2, overestimated 7 cases (18%) and underestimated 3 cases (8%). At inter-reader reproducibility analysis (mm): bias 0.9, coefficient of reproducibility 13 for all lesions; −0.1 and 6 for mass lesions; 2.5 and 20 for non-mass lesions.

      Conclusions

      Breast MRI may be performed using 0.08 mmol/kg of gadobutrol with high accuracy and acceptable inter-reader agreement.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mann R.M.
        • Cho N.
        • Moy L.
        Breast MRI: state of the art.
        Radiology. 2019; 292: 520-536https://doi.org/10.1148/radiol.2019182947
        • Sardanelli F.
        • Boetes C.
        • Borisch B.
        • Decker T.
        • Federico M.
        • Gilbert F.J.
        • et al.
        Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group.
        Eur J Cancer. 2010; 46: 1296-1316https://doi.org/10.1016/j.ejca.2010.02.015
        • Sardanelli F.
        • Cozzi A.
        • Trimboli R.M.
        • Schiaffino S.
        Gadolinium retention and breast MRI screening: more harm than good?.
        Am J Roentgenol. 2020; 214: 324-327https://doi.org/10.2214/AJR.19.21988
        • Serrano L.F.
        • Morrell B.
        • Mai A.
        Contrast media in breast imaging.
        Magn Reson Imaging Clin N Am. 2012; 20: 777-789https://doi.org/10.1016/j.mric.2012.07.004
        • Carbonaro L.A.
        • Pediconi F.
        • Verardi N.
        • Trimboli R.M.
        • Calabrese M.
        • Sardanelli F.
        Breast MRI using a high-relaxivity contrast agent: an overview.
        Am J Roentgenol. 2011; 196: 942-955https://doi.org/10.2214/AJR.10.4974
        • Knopp M.V.
        • Weiss E.
        • Sinn H.P.
        • Mattern J.
        • Junkermann H.
        • Radeleff J.
        • et al.
        Pathophysiologic basis of contrast enhancement in breast tumors.
        J Magn Reson Imaging. 1999; 10: 260-266https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<260::AID-JMRI6>3.0.CO;2-7
        • Carmeliet P.
        • Jain R.K.
        Angiogenesis in cancer and other diseases.
        Nature. 2000; 407: 249-257https://doi.org/10.1038/35025220
        • Kanda T.
        • Osawa M.
        • Oba H.
        • Toyoda K.
        • Kotoku J.
        • Haruyama T.
        • et al.
        High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration.
        Radiology. 2015; 275: 803-809https://doi.org/10.1148/radiol.14140364
        • Choi J.W.
        • Moon W.-J.
        Gadolinium deposition in the brain: current updates.
        Korean J Radiol. 2019; 20: 134https://doi.org/10.3348/kjr.2018.0356
        • European Medicines Agency
        PRAC confirms restrictions on the use of linear gadolinium agents.
        • U.S. Food and Drug Administration
        FDA drug safety communication: FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warnings.
        • Scott L.J.
        Gadobutrol: a review in contrast-enhanced MRI and MRA.
        Clin Drug Investig. 2018; 38: 773-784https://doi.org/10.1007/s40261-018-0674-9
        • Taheri S.
        • Rosenberg G.A.
        Abstract 3725: contrast enhanced MRI with a reduced dose of gadolinium for measurement of blood to brain influx rate in cerebrovascular diseases.
        Stroke. 2012; 43A3725https://doi.org/10.1161/str.43.suppl_1.A3725
        • Lee Y.-J.
        • Laub G.
        • Jung S.-L.
        • Yoo W.-J.
        • Kim Y.-J.
        • Ahn K.-J.
        • et al.
        Low-dose 3D time-resolved magnetic resonance angiography (MRA) of the supraaortic arteries: correlation with high spatial resolution 3D contrast-enhanced MRA.
        J Magn Reson Imaging. 2011; 33: 71-76https://doi.org/10.1002/jmri.22396
        • D’Angelo T.
        • Grigoratos C.
        • Mazziotti S.
        • Bratis K.
        • Pathan F.
        • Blandino A.
        • et al.
        High-throughput gadobutrol-enhanced CMR: a time and dose optimization study.
        J Cardiovasc Magn Reson. 2017; 19: 83https://doi.org/10.1186/s12968-017-0400-4
        • Clauser P.
        • Helbich T.H.
        • Kapetas P.
        • Pinker K.
        • Bernathova M.
        • Woitek R.
        • et al.
        Breast lesion detection and characterization with contrast-enhanced magnetic resonance imaging: prospective randomized intraindividual comparison of gadoterate meglumine (0.15 mmol/kg) and gadobenate dimeglumine (0.075 mmol/kg) at 3T.
        J Magn Reson Imaging. 2019; 49: 1157-1165https://doi.org/10.1002/jmri.26335
        • Melsaether A.N.
        • Kim E.
        • Mema E.
        • Babb J.
        • Kim S.G.
        Preliminary study: breast cancers can be well seen on 3T breast MRI with a half-dose of gadobutrol.
        Clin Imaging. 2019; 58: 84-89https://doi.org/10.1016/j.clinimag.2019.06.014
        • Evans J.D.
        Straightforward statistics for the behavioral sciences.
        Brooks/Cole, Pacific Grove1996
        • Onesti J.K.
        • Mangus B.E.
        • Helmer S.D.
        • Osland J.S.
        Breast cancer tumor size: correlation between magnetic resonance imaging and pathology measurements.
        Am J Surg. 2008; 196: 844-850https://doi.org/10.1016/j.amjsurg.2008.07.028
        • Yoo E.Y.
        • Nam S.Y.
        • Choi H.-Y.
        • Hong M.J.
        Agreement between MRI and pathologic analyses for determination of tumor size and correlation with immunohistochemical factors of invasive breast carcinoma.
        Acta Radiol. 2018; 59: 50-57https://doi.org/10.1177/0284185117705010
        • Bland J.M.
        • Altman D.G.
        Statistical methods for assessing agreement between two methods of clinical measurement.
        Lancet. 1986; 1: 307-310
        • Mann R.M.
        • Bult P.
        • van Laarhoven H.W.M.
        • Span P.N.
        • Schlooz M.
        • Veltman J.
        • et al.
        Breast cancer size estimation with MRI in BRCA mutation carriers and other high risk patients.
        Eur J Radiol. 2013; 82: 1416-1422https://doi.org/10.1016/j.ejrad.2013.03.003
        • Koh J.
        • Park A.Y.
        • Ko K.H.
        • Kim S.
        • Jung H.K.
        Assessing sizes of breast cancers that show non-mass enhancement on MRI based on inter-observer variability and comparison with pathology size.
        Acta Radiol. 2019; 60: 1102-1109https://doi.org/10.1177/0284185118817920
        • Rominger M.
        • Berg D.
        • Frauenfelder T.
        • Ramaswamy A.
        • Timmesfeld N.
        Which factors influence MRI-pathology concordance of tumour size measurements in breast cancer?.
        Eur Radiol. 2016; 26: 1457-1465https://doi.org/10.1007/s00330-015-3935-5
        • Jiang Y.-Z.
        • Xia C.
        • Peng W.-T.
        • Yu K.-D.
        • Zhuang Z.-G.
        • Shao Z.-M.
        Preoperative measurement of breast cancer overestimates tumor size compared to pathological measurement.
        PLoS One. 2014; 9e86676https://doi.org/10.1371/journal.pone.0086676
        • Grimsby G.M.
        • Gray R.
        • Dueck A.
        • Carpenter S.
        • Stucky C.-C.
        • Aspey H.
        • et al.
        Is there concordance of invasive breast cancer pathologic tumor size with magnetic resonance imaging?.
        Am J Surg. 2009; 198: 500-504https://doi.org/10.1016/j.amjsurg.2009.07.012
        • Cardoso F.
        • Kyriakides S.
        • Ohno S.
        • Penault-Llorca F.
        • Poortmans P.
        • Rubio I.T.
        • et al.
        Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†.
        Ann Oncol. 2019; 30: 1194-1220https://doi.org/10.1093/annonc/mdz173
        • Shen Y.
        • Goerner F.L.
        • Snyder C.
        • Morelli J.N.
        • Hao D.
        • Hu D.
        • et al.
        T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T.
        Invest Radiol. 2015; 50: 330-338https://doi.org/10.1097/RLI.0000000000000132