Advertisement

F18-fluorodeoxyglucose positron emission tomography/computed tomography in the evaluation of vertebral vascular tumors

      Highlights

      • This study compared the 18F-FDG PET/CT findings of vertebral vascular tumors with those of typical hemangiomas.
      • The results showed that 18F-FDG uptake of vertebral malignant vascular tumors is higher than that of hemangiomas.
      • The FDG uptake of hemangiomas varies and may be related to concurrent cortical destruction.
      • We demonstrate some features of these tumors seen on 18F-FDG PET/CT scans.

      Abstract

      Purpose

      The uptake of 18F-FDG is higher in most malignancies than in benign tumors. This study aimed to investigate the diagnostic value of 18F-FDG PET/CT in vertebral vascular tumors.

      Materials and methods

      We retrospectively collected PET/CT and clinical data of patients with vertebral vascular tumors and analyzed the location, number, and bone destruction and FDG uptake features of the lesion. We measured SUVmax and maximum diameter and analyzed the correlations between SUVmax and the pathological results, size, and CT features.

      Results

      Twenty-one pathology-proven vertebral vascular tumors were included: 2 angiosarcomas (SUVmax, 11.6 and 32.3), 1 epithelioid hemangioendothelioma (SUVmax, 5.7), 1 epithelioid hemangioma (SUVmax, 8.5), and 17 aggressive hemangiomas. Twelve cases of typical hemangiomas were included as controls. The SUVmax and diameter of the aggressive hemangiomas were higher than those of the typical hemangiomas. The mean SUVmax of aggressive hemangiomas with cortical destruction was higher than that of those without cortical destruction (t = −2.566, P = 0.022). Radioactive distribution in aggressive hemangiomas was homogeneous and heterogeneous in nine and eight cases, respectively. In six aggressive hemangiomas, the FDG uptake of residual and marginal sclerosing bone was higher than that of the osteolytic destruction area and/or paravertebral soft tissue. Six aggressive hemangiomas involved the spinal canal, without clear visualization on PET/CT.

      Conclusion

      18F-FDG uptake of vertebral malignant vascular tumors is higher than that of hemangiomas. The FDG uptake of hemangiomas varies and may be related to concurrent cortical destruction. 18F-FDG PET/CT shows limitations in evaluating the spinal canal involvement of aggressive hemangioma.

      Keywords

      Abbreviations:

      CT (computed tomography), FOV (field of view), MRI (magnetic resonance imaging), 18F-FDG (F18-fluorodeoxyglucose), PET (positron emission tomography), SUVmax (maximal standardized uptake value)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gaudino S.
        • Martucci M.
        • Colantonio R.
        • Lozupone E.
        • Visconti E.
        • Leone A.
        • et al.
        A systematic approach to vertebral hemangioma.
        Skeletal Radiol. 2015; 44: 25-36
        • Baudrez V.
        • Galant C.
        • Vande Berg B.C.
        Benign vertebral hemangioma: MR-histological correlation.
        Skeletal Radiol. 2001; 30: 442-446
        • Laredo J.D.
        • Reizine D.
        • Bard M.
        • Merland J.J.
        Vertebral hemangiomas: radiologic evaluation.
        Radiology. 1986; 161: 183-189
        • Jiang L.
        • Liu X.G.
        • Yuan H.S.
        • Yang S.M.
        • Li J.
        • Wei F.
        • et al.
        Diagnosis and treatment of vertebral hemangiomas with neurologic deficit: a report of 29 cases and literature review.
        Spine J. 2014; 14: 944-954
        • Dang L.
        • Liu C.
        • Yang S.M.
        • Jiang L.
        • Liu Z.J.
        • Liu X.G.
        • et al.
        Aggressive vertebral hemangioma of the thoracic spine without typical radiological appearance.
        Eur Spine J. 2012; 21: 1994-1999
        • Cloran F.J.
        • Pukenas B.A.
        • Loevner L.A.
        • Aquino C.
        • Schuster J.
        • Mohan S.
        Aggressive spinal haemangiomas: imaging correlates to clinical presentation with analysis of treatment algorithm and clinical outcomes.
        Br J Radiol. 2015; 8820140771
        • Choi Y.Y.
        • Kim J.Y.
        • Yang S.O.
        PET/CT in benign and malignant musculoskeletal tumors and tumor-like conditions.
        Semin Musculoskelet Radiol. 2014; 18: 133-148
        • Jaimini A.
        • D’Souza M.M.
        • Seniaray N.
        • Sharma H.
        • Arbind A.
        • Sharma R.
        • et al.
        Characterization of ‘cold’ vertebrae on 18F-FDG PET/CT.
        Nucl Med Commun. 2016; 37: 30-42
        • Ko S.W.
        • Park J.G.
        Cavernous hemangioma of the ilium mimicking aggressive malignant bone tumor with increased activity on (18)F-FDG PET/CT.
        Korean J Radiol. 2013; 14: 294-298
        • Nakayama M.
        • Okizaki A.
        • Ishitoya S.
        • Aburano T.
        “Hot” vertebra on (18)F-FDG PET scan: a case of vertebral hemangioma.
        Clin Nucl Med. 2012; 37: 1190-1193
        • Young Park J.
        • Gyoon Park J.
        • Jin Lee S.
        Cavernous hemangioma of the rib: a case report.
        Iran J Radiol. 2016; 13e31677
        • Zhang L.H.
        • Yuan H.
        Imaging features and differential diagnosis of malignant vascular tumor of spine.
        Radiol Practice. 2015; 30: 373-377
        • Lee W.W.
        • So Y.
        • Kang S.Y.
        • So M.K.
        • Kim H.
        • Chung H.W.
        • et al.
        F-18 fluorodeoxyglucose positron emission tomography for differential diagnosis and prognosis prediction of vascular tumors.
        Oncol Lett. 2017; 14: 665-672
        • Hubaut M.A.
        • Jaillard A.
        • Eloy C.
        • Petyt G.
        18F-FDG PET and bone scintigraphy of epithelioid hemangioendothelioma.
        Clin Nucl Med. 2019; 44: 127-129
        • Rao M.
        • Chen Y.
        • Huang Z.
        • Zhu Y.
        • Xiao X.
        FDG PET/CT findings of multifocal epithelioid hemangioendotheliomas of the bones.
        Clin Nucl Med. 2015; 40: 821-822
        • Zhang J.
        • Chen Y.
        • Zhang Y.
        • Zhang E.
        • Yu H.J.
        • Yuan H.
        • et al.
        Diagnosis of spinal lesions using perfusion parameters measured by DCE-MRI and metabolism parameters measured by PET/CT.
        Eur Spine J. 2019; https://doi.org/10.1007/s00586-019-06213-9
        • Nabavizadeh S.A.
        • Mamourian A.
        • Schmitt J.E.
        • Cloran F.
        • Vossough A.
        • Pukenas B.
        • et al.
        Utility of fat-suppressed sequences in differentiation of aggressive vs typical asymptomatic haemangioma of the spine.
        Br J Radiol. 2016; 8920150557
        • Hatayama K.
        • Watanabe H.
        • Ahmed A.R.
        • Yanagawa T.
        • Shinozaki T.
        • Oriuchi N.
        • et al.
        Evaluation of hemangioma by positron emission tomography: role in a multimodality approach.
        J Comput Assist Tomogr. 2003; 27: 70-77
        • Nakamura H.
        • Kawasaki N.
        • Taguchi M.
        • Kitamura H.
        Cavernous hemangioma of the rib diagnosed preoperatively by percutaneous needle biopsy.
        Gen Thorac Cardiovasc Surg. 2007; 55: 134-137
        • Rigopoulou A.
        • Saifuddin A.
        Intraosseous hemangioma of the appendicular skeleton: imaging features of 15 cases, and a review of the literature.
        Skeletal Radiol. 2012; 41: 1525-1536
        • Cui J.F.
        • Hao D.P.
        • Chen H.S.
        • Liu J.H.
        • Hou F.
        • Xu W.J.
        Computed tomography and magnetic resonance imaging features of cervical chordoma.
        Oncol Lett. 2018; 16: 861-865
        • Mammar H.
        • Kerrou K.
        • Nataf V.
        • Pontvert D.
        • Clemenceau S.
        • Lot G.
        • et al.
        Positron emission tomography/computed tomography imaging of residual skull base chordoma before radiotherapy using fluoromisonidazole and fluorodeoxyglucose: potential consequences for dose painting.
        Int J Radiat Oncol Biol Phys. 2012; 84: 681-687
        • Romero-Rojas A.E.
        • Diaz-Perez J.A.
        • Ariza-Serrano L.M.
        • Neira-Escobar F.E.
        Vertebral bone primary angiosarcoma: a case report.
        Orthop Surg. 2013; 5: 146-148
        • Albakr A.
        • Schell M.
        • Drew B.
        • Cenic A.
        Epithelioid hemangioendothelioma of the spine: case report and review of the literature.
        J Spine Surg. 2017; 3: 250-259
        • Errani C.
        • Vanel D.
        • Gambarotti M.
        • Alberghini M.
        • Picci P.
        • Faldini C.
        Vascular bone tumors: a proposal of a classification based on clinicopathological, radiographic and genetic features.
        Skeletal Radiol. 2012; 41: 1495-1507
        • Zhou Q.
        • Lu L.
        • Fu Y.
        • Xiang K.
        • Xu L.
        Epithelioid hemangioma of bone: a report of two special cases and a literature review.
        Skeletal Radiol. 2016; 45: 1723-1727
        • Schenker K.
        • Blumer S.
        • Jaramillo D.
        • Treece A.L.
        • Bhatia A.
        Epithelioid hemangioma of bone: radiologic and magnetic resonance imaging characteristics with histopathological correlation.
        Pediatr Radiol. 2017; 47: 1631-1637