Advertisement

Imaging manifestations of immune-related adverse effects in checkpoint inhibitor therapies: A primer for the radiologist

Published:February 21, 2020DOI:https://doi.org/10.1016/j.clinimag.2020.02.006

      Highlights

      • Imaging based primer for radiologists on adverse reactions to checkpoint inhibitors
      • Multisystem (head and neck, brain, spine, chest, abdomen) and multimodality approach
      • Key imaging features for diagnosis
      • Recommendations for clinical management and followup imaging
      • With the expanding use of the checkpoint inhibitors, practicing radiologists may see the adverse events with increasing frequency

      Abstract

      Immune checkpoint inhibitors are monoclonal antibodies directed against cellular pathways on T-cells to treat different types of malignancies. This new therapy can cause immune-related adverse events that can involve almost any organ system. This article will review clinical presentations, molecular mechanisms and imaging manifestations of adverse events caused by checkpoint inhibitors and also illustrate the pseudoprogression tumor response pattern.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mellman I.
        • Coukos G.
        • Dranoff G.
        Cancer immunotherapy comes of age.
        Nature. 2011; 480: 480-489
        • Shih K.
        • Arkenau H.T.
        • Infante J.R.
        Clinical impact of checkpoint inhibitors as novel cancer therapies.
        Drugs. 2014; 74: 1993-2013
        • Nishida N.
        • Kudo M.
        Role of immune checkpoint blockade in the treatment for human hepatocellular carcinoma.
        Digestive diseases (Basel, Switzerland). 2017; 35: 618-622
        • Callahan M.K.
        • Kluger H.
        • Postow M.A.
        • et al.
        Nivolumab plus ipilimumab in patients with advanced melanoma: updated survival, response, and safety data in a phase I dose-escalation study.
        J Clin Oncol. 2017; 36 (Jco2017722850): 391-398
        • Massari F.
        • Di Nunno V.
        • Ciccarese C.
        • et al.
        Adjuvant therapy in renal cell carcinoma.
        Cancer Treat Rev. 2017; 60: 152-157
        • Pishko A.
        • Nasta S.D.
        The role of novel immunotherapies in non-Hodgkin lymphoma.
        Transl Cancer Res. 2017; 6: 93-103
        • Ramos J.D.
        • Yu E.Y.
        Immuno-oncology in urothelial carcinoma: who or what will ultimately sit on the iron throne?.
        Immunotherapy. 2017; 9: 951-954
        • Hodi F.S.
        • O’Day S.J.
        • McDermott D.F.
        • et al.
        Improved survival with ipilimumab in patients with metastatic melanoma.
        N Engl J Med. 2010; 363: 711-723
        • Robert C.
        • Thomas L.
        • Bondarenko I.
        • et al.
        Ipilimumab plus dacarbazine for previously untreated metastatic melanoma.
        N Engl J Med. 2011; 364: 2517-2526
        • Hamid O.
        • Robert C.
        • Daud A.
        • et al.
        Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma.
        N Engl J Med. 2013; 369: 134-144
        • Robert C.
        • Ribas A.
        • Wolchok J.D.
        • et al.
        Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial.
        Lancet. 2014; 384: 1109-1117
        • Larkin J.
        • Hodi F.S.
        • Wolchok J.D.
        Combined nivolumab and ipilimumab or monotherapy in untreated melanoma.
        N Engl J Med. 2015; 373: 1270-1271
        • Langer C.J.
        • Gadgeel S.M.
        • Borghaei H.
        • et al.
        Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study.
        Lancet Oncol. 2016; 17: 1497-1508
        • Seiwert T.Y.
        • Burtness B.
        • Mehra R.
        • et al.
        Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial.
        Lancet Oncol. 2016; 17: 956-965
        • Brahmer J.
        • Reckamp K.L.
        • Baas P.
        • et al.
        Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer.
        N Engl J Med. 2015; 373: 123-135
        • Borghaei H.
        • Paz-Ares L.
        • Horn L.
        • et al.
        Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer.
        N Engl J Med. 2015; 373: 1627-1639
        • Overman M.J.
        • McDermott R.
        • Leach J.L.
        • et al.
        Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study.
        Lancet Oncol. 2017; 18: 1182-1191
        • El-Khoueiry A.B.
        • Sangro B.
        • Yau T.
        • et al.
        Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial.
        Lancet. 2017; 389: 2492-2502
        • Ferris R.L.
        • Blumenschein Jr., G.
        • Fayette J.
        • et al.
        Nivolumab for recurrent squamous-cell carcinoma of the head and neck.
        N Engl J Med. 2016; 375: 1856-1867
        • Sharma P.
        • Retz M.
        • Siefker-Radtke A.
        • et al.
        Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial.
        Lancet Oncol. 2017; 18: 312-322
        • Bellmunt J.
        • de Wit R.
        • Vaughn D.J.
        • et al.
        Pembrolizumab as second-line therapy for advanced urothelial carcinoma.
        N Engl J Med. 2017; 376: 1015-1026
        • Balar A.V.
        • Castellano D.
        • O’Donnell P.H.
        • et al.
        First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study.
        Lancet Oncol. 2017; 18: 1483-1492
        • Motzer R.J.
        • Escudier B.
        • McDermott D.F.
        • et al.
        Nivolumab versus everolimus in advanced renal-cell carcinoma.
        N Engl J Med. 2015; 373: 1803-1813
        • Herbst R.S.
        • Baas P.
        • Kim D.W.
        • et al.
        Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial.
        Lancet. 2016; 387: 1540-1550
        • Garon E.B.
        • Rizvi N.A.
        • Hui R.
        • et al.
        Pembrolizumab for the treatment of non-small-cell lung cancer.
        N Engl J Med. 2015; 372: 2018-2028
        • Balar A.V.
        • Galsky M.D.
        • Rosenberg J.E.
        • et al.
        Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial.
        Lancet. 2017; 389: 67-76
        • Massard C.
        • Gordon M.S.
        • Sharma S.
        • et al.
        Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death Ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer.
        J Clin Oncol. 2016; 34: 3119-3125
        • Apolo A.B.
        • Infante J.R.
        • Balmanoukian A.
        • et al.
        Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study.
        J Clin Oncol. 2017; 35: 2117-2124
        • Kaufman H.L.
        • Russell J.
        • Hamid O.
        • et al.
        Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial.
        Lancet Oncol. 2016; 17: 1374-1385
        • Melero I.
        • Berman D.M.
        • Aznar M.A.
        • Korman A.J.
        • Perez Gracia J.L.
        • Haanen J.
        Evolving synergistic combinations of targeted immunotherapies to combat cancer.
        Nat Rev Cancer. 2015; 15: 457-472
        • Michot J.M.
        • Bigenwald C.
        • Champiat S.
        • et al.
        Immune-related adverse events with immune checkpoint blockade: a comprehensive review.
        European journal of cancer (Oxford, England : 1990). 2016; 54: 139-148
        • Champiat S.
        • Lambotte O.
        • Barreau E.
        • et al.
        Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper.
        Annals of oncology : official journal of the European Society for Medical Oncology/ESMO. 2016; 27: 559-574
        • Culakova E.
        • Thota R.
        • Poniewierski M.S.
        • et al.
        Patterns of chemotherapy-associated toxicity and supportive care in US oncology practice: a nationwide prospective cohort study.
        Cancer Med. 2014; 3: 434-444
        • Wang P.F.
        • Chen Y.
        • Song S.Y.
        • et al.
        Immune-related adverse events associated with anti-PD-1/PD-L1 treatment for malignancies: a meta-analysis.
        Front Pharmacol. 2017; 8: 730
        • Rizvi N.A.
        • Mazieres J.
        • Planchard D.
        • et al.
        Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial.
        Lancet Oncol. 2015; 16: 257-265
        • Topalian S.L.
        • Hodi F.S.
        • Brahmer J.R.
        • et al.
        Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.
        N Engl J Med. 2012; 366: 2443-2454
        • Baba T.
        • Sakai F.
        • Kato T.
        • et al.
        Radiologic features of pneumonitis associated with nivolumab in non-small-cell lung cancer and malignant melanoma.
        Future Oncol. 2019; 15: 1911-1920
        • Kim E.Y.
        • Park I.
        • Kim Y.S.
        • et al.
        Unusual radiologic manifestation of pseudoprogression in pulmonary metastases after durvalumab treatment in metastatic bladder urothelial cancer.
        Thorac Cancer. 2019; 10: 1016-1018
        • Walker L.S.
        • Sansom D.M.
        The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses.
        Nat Rev Immunol. 2011; 11: 852-863
        • Pardoll D.M.
        The blockade of immune checkpoints in cancer immunotherapy.
        Nat Rev Cancer. 2012; 12: 252-264
        • Fife B.T.
        • Bluestone J.A.
        Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways.
        Immunol Rev. 2008; 224: 166-182
        • Amarnath S.
        • Mangus C.W.
        • Wang J.C.
        • et al.
        The PDL1-PD1 axis converts human TH1 cells into regulatory T cells.
        Science translational medicine. 2011; 3111ra120
        • Francisco L.M.
        • Salinas V.H.
        • Brown K.E.
        • et al.
        PD-L1 regulates the development, maintenance, and function of induced regulatory T cells.
        J Exp Med. 2009; 206: 3015-3029
        • Postow M.A.
        • Callahan M.K.
        • Wolchok J.D.
        Immune checkpoint blockade in cancer therapy.
        J Clin Oncol. 2015; 33: 1974-1982
        • Iwai Y.
        • Ishida M.
        • Tanaka Y.
        • Okazaki T.
        • Honjo T.
        • Minato N.
        Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.
        Proc Natl Acad Sci U S A. 2002; 99: 12293-12297
        • Dong H.
        • Strome S.E.
        • Salomao D.R.
        • et al.
        Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion.
        Nat Med. 2002; 8: 793-800
        • Papavasileiou E.
        • Prasad S.
        • Freitag S.K.
        • Sobrin L.
        • Lobo A.M.
        Ipilimumab-induced ocular and orbital inflammation—a case series and review of the literature.
        Ocul Immunol Inflamm. 2016; 24: 140-146
        • Sheldon C.A.
        • Kharlip J.
        • Tamhankar M.A.
        Inflammatory orbitopathy associated with ipilimumab.
        Ophthal Plast Reconstr Surg. 2017; 33: S155-s158
        • Robinson M.R.
        • Chan C.C.
        • Yang J.C.
        • et al.
        Cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma: a new cause of uveitis.
        Journal of immunotherapy (Hagerstown, Md : 1997). 2004; 27: 478-479
        • Antoun J.
        • Titah C.
        • Cochereau I.
        Ocular and orbital side-effects of checkpoint inhibitors: a review article.
        Curr Opin Oncol. 2016; 28: 288-294
        • Weber J.S.
        • Kahler K.C.
        • Hauschild A.
        Management of immune-related adverse events and kinetics of response with ipilimumab.
        J Clin Oncol. 2012; 30: 2691-2697
        • Byun D.J.
        • Wolchok J.D.
        • Rosenberg L.M.
        • Girotra M.
        Cancer immunotherapy - immune checkpoint blockade and associated endocrinopathies.
        Nat Rev Endocrinol. 2017; 13: 195-207
        • Ryder M.
        • Callahan M.
        • Postow M.A.
        • Wolchok J.
        • Fagin J.A.
        Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution.
        Endocr Relat Cancer. 2014; 21: 371-381
        • Barroso-Sousa R.
        • Barry W.T.
        • Garrido-Castro A.C.
        • et al.
        Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis.
        JAMA Oncol. 2018; 4: 173-182
        • Joshi M.N.
        • Whitelaw B.C.
        • Palomar M.T.
        • Wu Y.
        • Carroll P.V.
        Immune checkpoint inhibitor-related hypophysitis and endocrine dysfunction: clinical review.
        Clin Endocrinol (Oxf). 2016; 85: 331-339
        • Wick W.
        • Hertenstein A.
        • Platten M.
        Neurological sequelae of cancer immunotherapies and targeted therapies.
        Lancet Oncol. 2016; 17: e529-e541
        • Faje A.T.
        • Sullivan R.
        • Lawrence D.
        • et al.
        Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma.
        J Clin Endocrinol Metab. 2014; 99: 4078-4085
        • Blansfield J.A.
        • Beck K.E.
        • Tran K.
        • et al.
        Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer.
        Journal of immunotherapy (Hagerstown, Md : 1997). 2005; 28: 593-598
        • Dillard T.
        • Yedinak C.G.
        • Alumkal J.
        • Fleseriu M.
        Anti-CTLA-4 antibody therapy associated autoimmune hypophysitis: serious immune related adverse events across a spectrum of cancer subtypes.
        Pituitary. 2010; 13: 29-38
        • Araujo P.B.
        • Coelho M.C.
        • Arruda M.
        • Gadelha M.R.
        • Neto L.V.
        Ipilimumab-induced hypophysitis: review of the literature.
        J Endocrinol Invest. 2015; 38: 1159-1166
        • Chodakiewitz Y.
        • Brown S.
        • Boxerman J.L.
        • Brody J.M.
        • Rogg J.M.
        Ipilimumab treatment associated pituitary hypophysitis: clinical presentation and imaging diagnosis.
        Clin Neurol Neurosurg. 2014; 125: 125-130
        • Eigentler T.K.
        • Hassel J.C.
        • Berking C.
        • et al.
        Diagnosis, monitoring and management of immune-related adverse drug reactions of anti-PD-1 antibody therapy.
        Cancer Treat Rev. 2016; 45: 7-18
        • Min L.
        • Vaidya A.
        • Becker C.
        Thyroid autoimmunity and ophthalmopathy related to melanoma biological therapy.
        Eur J Endocrinol. 2011; 164: 303-307
        • Gonzalez-Rodriguez E.
        • Rodriguez-Abreu D.
        Immune checkpoint inhibitors: review and management of endocrine adverse events.
        Oncologist. 2016; 21: 804-816
        • Huang J.
        • Liu F.
        • Liu Z.
        • et al.
        Immune checkpoint in glioblastoma: promising and challenging.
        Front Pharmacol. 2017; 8: 242
        • Maurice C.
        • Schneider R.
        • Kiehl T.R.
        • et al.
        Subacute CNS demyelination after treatment with nivolumab for melanoma.
        Cancer Immunol Res. 2015; 3: 1299-1302
        • Ali S.
        • Lee S.K.
        Ipilimumab therapy for melanoma: a mimic of leptomeningeal metastases.
        AJNR Am J Neuroradiol. 2015; 36: E69-E70
        • Manousakis G.
        • Koch J.
        • Sommerville R.B.
        • et al.
        Multifocal radiculoneuropathy during ipilimumab treatment of melanoma.
        Muscle Nerve. 2013; 48: 440-444
        • Cafuir L.
        • Lawson D.
        • Desai N.
        • Kesner V.
        • Voloschin A.
        Inflammatory demyelinating polyneuropathy versus leptomeningeal disease following Ipilimumab.
        J Immunother Cancer. 2018; 6: 11
        • Krishnan C.
        • Kaplin A.I.
        • Pardo C.A.
        • Kerr D.A.
        • Keswani S.C.
        Demyelinating disorders: update on transverse myelitis.
        Curr Neurol Neurosci Rep. 2006; 6: 236-243
        • Jeffery D.R.
        • Mandler R.N.
        • Davis L.E.
        Transverse myelitis. Retrospective analysis of 33 cases, with differentiation of cases associated with multiple sclerosis and parainfectious events.
        Arch Neurol. 1993; 50: 532-535
        • Pidcock F.S.
        • Krishnan C.
        • Crawford T.O.
        • Salorio C.F.
        • Trovato M.
        • Kerr D.A.
        Acute transverse myelitis in childhood: center-based analysis of 47 cases.
        Neurology. 2007; 68: 1474-1480
        • Choi K.H.
        • Lee K.S.
        • Chung S.O.
        • et al.
        Idiopathic transverse myelitis: MR characteristics.
        AJNR Am J Neuroradiol. 1996; 17: 1151-1160
        • Scott T.F.
        • Frohman E.M.
        • De Seze J.
        • Gronseth G.S.
        • Weinshenker B.G.
        Evidence-based guideline: clinical evaluation and treatment of transverse myelitis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology.
        Neurology. 2011; 77: 2128-2134
        • Liao B.
        • Shroff S.
        • Kamiya-Matsuoka C.
        • Tummala S.
        Atypical neurological complications of ipilimumab therapy in patients with metastatic melanoma.
        Neuro-oncology. 2014; 16: 589-593
        • Mehta A.
        • Gupta A.
        • Hannallah F.
        • et al.
        Myocarditis as an immune-related adverse event with ipilimumab/nivolumab combination therapy for metastatic melanoma.
        Melanoma Res. 2016; 26: 319-320
        • Johnson D.B.
        • Balko J.M.
        • Compton M.L.
        • et al.
        Fulminant myocarditis with combination immune checkpoint blockade.
        N Engl J Med. 2016; 375: 1749-1755
        • Ganatra S.
        • Neilan T.G.
        Immune checkpoint inhibitor-associated myocarditis.
        Oncologist. 2018; 23: 879-886
        • Löffler A.
        • Salerno M.
        Cardiac MRI for the evaluation of oncologic cardiotoxicity.
        J Nucl Cardiol. 2018 Dec; 25: 2148-2158
        • Howell M.
        • Lee R.
        • Bowyer S.
        • Fusi A.
        • Lorigan P.
        Optimal management of immune-related toxicities associated with checkpoint inhibitors in lung cancer.
        Lung cancer (Amsterdam, Netherlands). 2015; 88: 117-123
        • Hu Y.B.
        • Zhang Q.
        • Li H.J.
        • et al.
        Evaluation of rare but severe immune related adverse effects in PD-1 and PD-L1 inhibitors in non-small cell lung cancer: a meta-analysis.
        Translational lung cancer research. 2017; 6: S8-s20
        • Tabchi S.
        • Messier C.
        • Blais N.
        Immune-mediated respiratory adverse events of checkpoint inhibitors.
        Curr Opin Oncol. 2016; 28: 269-277
        • Tirumani S.H.
        • Ramaiya N.H.
        • Keraliya A.
        • et al.
        Radiographic profiling of immune-related adverse events in advanced melanoma patients treated with ipilimumab.
        Cancer Immunol Res. 2015; 3: 1185-1192
        • Bronstein Y.
        • Ng C.S.
        • Hwu P.
        • Hwu W.J.
        Radiologic manifestations of immune-related adverse events in patients with metastatic melanoma undergoing anti-CTLA-4 antibody therapy.
        AJR Am J Roentgenol. 2011; 197: W992-w1000
        • Firwana B.
        • Ravilla R.
        • Raval M.
        • Hutchins L.
        • Mahmoud F.
        Sarcoidosis-like syndrome and lymphadenopathy due to checkpoint inhibitors.
        Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners. 2017; 23: 620-624
        • Kwak J.J.
        • Tirumani S.H.
        • Van den Abbeele A.D.
        • Koo P.J.
        • Jacene H.A.
        Cancer immunotherapy: imaging assessment of novel treatment response patterns and immune-related adverse events.
        Radiographics: a review publication of the Radiological Society of North America, Inc. 2015; 35: 424-437
        • Braschi-Amirfarzan M.
        • Tirumani S.H.
        • Hodi Jr., F.S.
        • Nishino M.
        Immune-checkpoint inhibitors in the era of precision medicine: what radiologists should know.
        Korean J Radiol. 2017; 18: 42-53
        • Hofmann L.
        • Forschner A.
        • Loquai C.
        • et al.
        Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy.
        Eur J Cancer. 2016 Jun; 60: 190-209
        • Carbognin G.
        • Girardi V.
        • Biasiutti C.
        • et al.
        Autoimmune pancreatitis: imaging findings on contrast-enhanced MR, MRCP and dynamic secretin-enhanced MRCP.
        Radiol Med. 2009; 114: 1214-1231
        • Hart P.A.
        • Zen Y.
        • Chari S.T.
        Recent advances in autoimmune pancreatitis.
        Gastroenterology. 2015; 149: 39-51
        • Min L.
        • Ibrahim N.
        Ipilimumab-induced autoimmune adrenalitis.
        The lancet Diabetes & endocrinology. 2013; 1e15
        • Bacanovic S.
        • Burger I.A.
        • Stolzmann P.
        • Hafner J.
        • Huellner M.W.
        Ipilimumab-induced adrenalitis: a possible pitfall in 18F-FDG-PET/CT.
        Clin Nucl Med. 2015; 40: e518-e519
        • Torino F.
        • Corsello S.M.
        • Salvatori R.
        Endocrinological side-effects of immune checkpoint inhibitors.
        Curr Opin Oncol. 2016; 28: 278-287
        • Cohen J.V.
        • Alomari A.K.
        • Vortmeyer A.O.
        • et al.
        Melanoma brain metastasis pseudoprogression after pembrolizumab treatment.
        Cancer Immunol Res. 2016; 4: 179-182
        • Wang G.X.
        • Kurra V.
        • Gainor J.F.
        • et al.
        Immune checkpoint inhibitor cancer therapy: spectrum of imaging findings.
        Radiographics : a review publication of the Radiological Society of North America, Inc. 2017; 37: 2132-2144
        • Wolchok J.D.
        • Hoos A.
        • O’ Day S, et al.
        Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria.
        Clinical cancer research : an official journal of the American Association for Cancer Research. 2009; 15: 7412-74201094
        • Hodi F.S.
        • Hwu W.J.
        • Kefford R.
        • et al.
        Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab.
        J Clin Oncol. 2016; 34: 1510-1517