Advertisement

MR imaging of cartilage repair surgery of the knee

      Highlights

      • MRI offers morphologic and compositional evaluation of articular cartilage.
      • There are a variety of cartilage repair surgeries to fix (osteo)chondral defects.
      • It is important to know the normal and abnormal MRI appearances of these surgeries.

      Abstract

      Articular cartilage is a complex tissue with unique properties that are essential for normal joint function. Many processes can result in cartilage injury, ranging from acute trauma to degenerative processes. Articular cartilage lacks vascularity, and therefore most chondral defects do not heal spontaneously and may require surgical repair. A variety of cartilage repair techniques have been developed and include bone marrow stimulation (microfracture), osteochondral autograft transfer system (OATS) or osteochondral allograft transplantation, autologous chondrocyte implantation (ACI), matrix-assisted chondrocyte implantation (MACI), and other newer processed allograft cartilage techniques. Although arthroscopy has long been considered as the gold standard for evaluation of cartilage after cartilage repair, magnetic resonance (MR) imaging is a non-invasive method to assess the repair site and can be scored using Magnetic resonance Observation of Cartilage Repair Tissue (MOCART). MR also provides additional evaluation of the subchondral bone and for other potential causes of knee pain or internal derangement. Conventional MR can be used to evaluate the status of cartilage repair and potential complications. Compositional MR sequences can provide supplementary information about the biochemical contents of the reparative tissue. This article reviews the various types of cartilage repair surgeries and their postoperative MR imaging appearances.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bhosale A.M.
        • Richardson J.B.
        Articular cartilage: structure, injuries and review of management.
        Br Med Bull. 2008; 87: 77-95
        • Driban J.B.
        • Eaton C.B.
        • Lo G.H.
        • Ward R.J.
        • Lu B.
        • McAlindon T.E.
        Association of knee injuries with accelerated knee osteoarthritis progression: data from the osteoarthritis initiative.
        Arthritis Care Res (Hoboken). 2014; 66: 1673-1679
        • Cain E.L.
        • Clancy W.G.
        Treatment algorithm for osteochondral injuries of the knee.
        Clin Sports Med. 2001; 20: 321-342
        • Kane P.
        • Frederick R.
        • Tucker B.
        • et al.
        Surgical restoration/repair of articular cartilage injuries in athletes.
        Phys Sportsmed. 2013; 41: 75-86
        • Trattnig S.
        • Millington S.A.
        • Szomolanyi P.
        • Marlovits S.
        MR imaging of osteochondral grafts and autologous chondrocyte implantation.
        Eur Radiol. 2007; 17: 103-118
        • Farr J.
        • Cole B.
        • Dhawan A.
        • Kercher J.
        • Sherman S.
        Clinical cartilage restoration: evolution and overview.
        Clin Orthop Relat Res. 2011; 469: 2696-2705
        • Guermazi A.
        • Roemer F.W.
        • Alizai H.
        • et al.
        State of the art: MR imaging after knee cartilage repair surgery.
        Radiology. 2015; 277: 23-43
        • Kreuz P.C.
        • Erggelet C.
        • Steinwachs M.R.
        • et al.
        Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger?.
        Arthroscopy. 2006; 22: 1180-1186
        • Erggelet C.
        • Vavken P.
        Microfracture for the treatment of cartilage defects in the knee joint - a golden standard?.
        J Clin Orthop Trauma. 2016; 7: 145-152
        • Mithoefer K.
        • Williams 3rd, R.J.
        • Warren R.F.
        • et al.
        The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study.
        J Bone Joint Surg Am. 2005; 87: 1911-1920
        • Kreuz P.C.
        • Steinwachs M.R.
        • Erggelet C.
        • et al.
        Results after microfracture of full-thickness chondral defects in different compartments in the knee.
        Osteoarthr Cartil. 2006; 14: 1119-1125
        • Gobbi A.
        • Karnatzikos G.
        • Kumar A.
        Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 1986-1996
        • Choi Y.S.
        • Potter H.G.
        • Chun T.J.
        MR imaging of cartilage repair in the knee and ankle.
        Radiographics. 2008; 28: 1043-1059
        • Hangody L.
        • Fules P.
        Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience.
        J Bone Joint Surg Am. 2003; 85-A: 25-32
        • Mahomed M.N.
        • Beaver R.J.
        • Gross A.E.
        The long-term success of fresh, small fragment osteochondral allografts used for intraarticular post-traumatic defects in the knee joint.
        Orthopedics. 1992; 15: 1191-1199
        • Marcacci M.
        • Kon E.
        • Delcogliano M.
        • Filardo G.
        • Busacca M.
        • Zaffagnini S.
        Arthroscopic autologous osteochondral grafting for cartilage defects of the knee: prospective study results at a minimum 7-year follow-up.
        Am J Sports Med. 2007; 35: 2014-2021
        • Pareek A.
        • Reardon P.J.
        • Macalena J.A.
        • et al.
        Osteochondral autograft transfer versus microfracture in the knee: a meta-analysis of prospective comparative studies at midterm.
        Arthroscopy. 2016; 32: 2118-2130
        • Bexkens R.
        • Ogink P.T.
        • Doornberg J.N.
        • et al.
        Donor-site morbidity after osteochondral autologous transplantation for osteochondritis dissecans of the capitellum: a systematic review and meta-analysis.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 2237-2246
        • Camp C.L.
        • Stuart M.J.
        • Krych A.J.
        Current concepts of articular cartilage restoration techniques in the knee.
        Sports Health. 2014; 6: 265-273
        • El-Rashidy H.
        • Villacis D.
        • Omar I.
        • Kelikian A.S.
        Fresh osteochondral allograft for the treatment of cartilage defects of the talus: a retrospective review.
        J Bone Joint Surg Am. 2011; 93: 1634-1640
        • Sherman S.L.
        • Garrity J.
        • Bauer K.
        • Cook J.
        • Stannard J.
        • Bugbee W.
        Fresh osteochondral allograft transplantation for the knee: current concepts.
        J Am Acad Orthop Surg. 2014; 22: 121-133
        • Levy Y.D.
        • Gortz S.
        • Pulido P.A.
        • McCauley J.C.
        • Bugbee W.D.
        Do fresh osteochondral allografts successfully treat femoral condyle lesions?.
        Clin Orthop Relat Res. 2013; 471: 231-237
        • Murphy R.T.
        • Pennock A.T.
        • Bugbee W.D.
        Osteochondral allograft transplantation of the knee in the pediatric and adolescent population.
        Am J Sports Med. 2014; 42: 635-640
        • Gracitelli G.C.
        • Meric G.
        • Pulido P.A.
        • McCauley J.C.
        • Bugbee W.D.
        Osteochondral allograft transplantation for knee lesions after failure of cartilage repair surgery.
        Cartilage. 2015; 6: 98-105
        • Krych A.J.
        • Robertson C.M.
        • Williams III, R.J.
        • Cartilage Study G.
        Return to athletic activity after osteochondral allograft transplantation in the knee.
        Am J Sports Med. 2012; 40: 1053-1059
        • Favinger J.L.
        • Ha A.S.
        • Brage M.E.
        • Chew F.S.
        Osteoarticular transplantation: recognizing expected postsurgical appearances and complications.
        Radiographics. 2015; 35: 780-792
        • Sirlin C.B.
        • Brossmann J.
        • Boutin R.D.
        • et al.
        Shell osteochondral allografts of the knee: comparison of mr imaging findings and immunologic responses.
        Radiology. 2001; 219: 35-43
        • Chui K.
        • Jeys L.
        • Snow M.
        Knee salvage procedures: the indications, techniques and outcomes of large osteochondral allografts.
        World J Orthop. 2015; 6: 340-350
        • Brittberg M.
        • Lindahl A.
        • Nilsson A.
        • Ohlsson C.
        • Isaksson O.
        • Peterson L.
        Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.
        N Engl J Med. 1994; 331: 889-895
        • Minas T.
        • Ogura T.
        • Bryant T.
        Autologous chondrocyte implantation.
        JBJS Essent Surg Tech. 2016; 6: e24
        • McCarthy H.S.
        • Richardson J.B.
        • Parker J.C.
        • Roberts S.
        Evaluating joint morbidity after chondral harvest for autologous chondrocyte implantation (ACI): a study of ACI-treated ankles and hips with a knee chondral harvest.
        Cartilage. 2016; 7: 7-15
        • Brittberg M.
        Autologous chondrocyte transplantation.
        Clin Orthop Relat Res. 1999; (367 Suppl): S147-S155
        • Fu F.H.
        • Zurakowski D.
        • Browne J.E.
        • et al.
        Autologous chondrocyte implantation versus debridement for treatment of full-thickness chondral defects of the knee: an observational cohort study with 3-year follow-up.
        Am J Sports Med. 2005; 33: 1658-1666
        • Nawaz S.Z.
        • Bentley G.
        • Briggs T.W.
        • et al.
        Autologous chondrocyte implantation in the knee: mid-term to long-term results.
        J Bone Joint Surg Am. 2014; 96: 824-830
        • Biant L.C.
        • Bentley G.
        • Vijayan S.
        • Skinner J.A.
        • Carrington R.W.
        Long-term results of autologous chondrocyte implantation in the knee for chronic chondral and osteochondral defects.
        Am J Sports Med. 2014; 42: 2178-2183
        • Kon E.
        • Filardo G.
        • Di Matteo B.
        • Perdisa F.
        • Marcacci M.
        Matrix assisted autologous chondrocyte transplantation for cartilage treatment: a systematic review.
        Bone Joint Res. 2013; 2: 18-25
        • Schuette H.B.
        • Kraeutler M.J.
        • McCarty E.C.
        Matrix-assisted autologous chondrocyte transplantation in the knee: a systematic review of mid- to long-term clinical outcomes.
        Orthop J Sports Med. 2017; 52325967117709250
        • Salzmann G.M.
        • Paul J.
        • Bauer J.S.
        • et al.
        T2 assessment and clinical outcome following autologous matrix-assisted chondrocyte and osteochondral autograft transplantation.
        Osteoarthr Cartil. 2009; 17: 1576-1582
        • Geraghty S.
        • Kuang J.Q.
        • Yoo D.
        • LeRoux-Williams M.
        • Vangsness Jr., C.T.
        • Danilkovitch A.
        A novel, cryopreserved, viable osteochondral allograft designed to augment marrow stimulation for articular cartilage repair.
        J Orthop Surg Res. 2015; 10: 66
        • Hoffman J.K.
        • Geraghty S.
        • Protzman N.M.
        Articular cartilage repair using marrow stimulation augmented with a viable chondral allograft: 9-month postoperative histological evaluation.
        Case Rep Orthop. 2015; 2015617365
        • Hirahara A.M.
        • Mueller Jr., K.W.
        BioCartilage: a new biomaterial to treat chondral lesions.
        Sports Med Arthrosc Rev. 2015; 23: 143-148
        • Fortier L.A.
        • Chapman H.S.
        • Pownder S.L.
        • et al.
        BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss.
        Am J Sports Med. 2016; 44: 2366-2374
        • Clanton T.O.J.N.
        • Matheny L.M.
        Use of cartilage extracellular matrix and bone marrow aspirate concentrate in treatment of osteochondral lesions of the talus.
        Tech Foot Ankle. 2014; 13: 212-220
        • Gracitelli G.C.
        • Moraes V.Y.
        • Franciozi C.E.
        • Luzo M.V.
        • Belloti J.C.
        Surgical interventions (microfracture, drilling, mosaicplasty, and allograft transplantation) for treating isolated cartilage defects of the knee in adults.
        Cochrane Database Syst Rev. 2016; 9CD010675
        • Vasiliadis H.S.
        • Wasiak J.
        Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee.
        Cochrane Database Syst Rev. 2010; 10CD003323
        • Jungmann P.M.
        • Gersing A.S.
        • Baumann F.
        • et al.
        Cartilage repair surgery prevents progression of knee degeneration.
        Knee Surg Sports Traumatol Arthrosc. 2018; https://doi.org/10.1007/s00167-018-5321-8
        • Crema M.D.
        • Roemer F.W.
        • Marra M.D.
        • et al.
        Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research.
        Radiographics. 2011; 31: 37-61
        • Ronga M.
        • Angeretti G.
        • Ferraro S.
        • G D.E.F.
        • Genovese E.A.
        • Cherubino P.
        Imaging of articular cartilage: current concepts.
        Joints. 2014; 2: 137-140
        • Chang G.
        • Sherman O.
        • Madelin G.
        • Recht M.
        • Regatte R.
        MR imaging assessment of articular cartilage repair procedures.
        Magn Reson Imaging Clin N Am. 2011; 19: 323-337
        • Mithoefer K.
        • McAdams T.
        • Williams R.J.
        • Kreuz P.C.
        • Mandelbaum B.R.
        Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis.
        Am J Sports Med. 2009; 37: 2053-2063
        • Link T.M.
        • Mischung J.
        • Wortler K.
        • Burkart A.
        • Rummeny E.J.
        • Imhoff A.B.
        Normal and pathological MR findings in osteochondral autografts with longitudinal follow-up.
        Eur Radiol. 2006; 16: 88-96
        • Nakagawa Y.
        • Suzuki T.
        • Kuroki H.
        • Kobayashi M.
        • Okamoto Y.
        • Nakamura T.
        The effect of surface incongruity of grafted plugs in osteochondral grafting: a report of five cases.
        Knee Surg Sports Traumatol Arthrosc. 2007; 15: 591-596
        • Johnson M.R.
        • LaPrade R.F.
        Tibial plateu “kissing lesion” from a proud osteochondral autograft.
        Am J Orthop (Belle Mead NJ). 2011; 40: 359-361
        • Andrade R.
        • Vasta S.
        • Pereira R.
        • et al.
        Knee donor-site morbidity after mosaicplasty - a systematic review.
        J Exp Orthop. 2016; 3: 31
        • Mologne T.S.
        • Cory E.
        • Hansen B.C.
        • et al.
        Osteochondral allograft transplant to the medial femoral condyle using a medial or lateral femoral condyle allograft: is there a difference in graft sources?.
        Am J Sports Med. 2014; 42: 2205-2213
        • Trattnig S.
        • Ba-Ssalamah A.
        • Pinker K.
        • Plank C.
        • Vecsei V.
        • Marlovits S.
        Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging.
        Magn Reson Imaging. 2005; 23: 779-787
        • Henderson I.J.
        • Tuy B.
        • Connell D.
        • Oakes B.
        • Hettwer W.H.
        Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months.
        J Bone Joint Surg Br. 2003; 85: 1060-1066
        • Henderson I.
        • Gui J.
        • Lavigne P.
        Autologous chondrocyte implantation: natural history of postimplantation periosteal hypertrophy and effects of repair-site debridement on outcome.
        Arthroscopy. 2006; 22 ([e1311]): 1318-1324
        • Peterson L.
        • Minas T.
        • Brittberg M.
        • Nilsson A.
        • Sjogren-Jansson E.
        • Lindahl A.
        Two- to 9-year outcome after autologous chondrocyte transplantation of the knee.
        Clin Orthop Relat Res. 2000; 374: 212-234
        • Carter A.H.
        • Guttierez N.
        • Subhawong T.K.
        • et al.
        MR imaging of BioCartilage augmented microfracture surgery utilizing 2D MOCART and KOOS scores.
        J Clin Orthop Trauma. 2018; 9: 146-152
        • Marlovits S.
        • Striessnig G.
        • Resinger C.T.
        • et al.
        Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging.
        Eur J Radiol. 2004; 52: 310-319
        • Marlovits S.
        • Singer P.
        • Zeller P.
        • Mandl I.
        • Haller J.
        • Trattnig S.
        Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years.
        Eur J Radiol. 2006; 57: 16-23
        • Blackman A.J.
        • Smith M.V.
        • Flanigan D.C.
        • Matava M.J.
        • Wright R.W.
        • Brophy R.H.
        Correlation between magnetic resonance imaging and clinical outcomes after cartilage repair surgery in the knee: a systematic review and meta-analysis.
        Am J Sports Med. 2013; 41: 1426-1434