Advertisement

Protocol optimization for cardiac and liver iron content assessment using MRI: What sequence should I use?

Published:February 20, 2019DOI:https://doi.org/10.1016/j.clinimag.2019.02.012

      Highlights

      • Liver T2 and T2* have excellent agreement and consistency.
      • Bright- and dark-blood T2* sequences yield similar values. The later improves visualization of the myocardium and analysis.
      • Liver T2* estimation using the liver parenchyma available in the cardiac acquisition is feasible and accurate
      • The decision to use a single sequence for cardiac and liver T2* estimation should be taken according to each patient
      • A single breath hold GRE sequence for liver and cardiac T2* requires optimization for patients with severe iron overload

      Abstract

      Objective

      To determine the optimal MRI protocol and sequences for liver and cardiac iron estimation in children.

      Methods

      We evaluated patients ≤18 years with cardiac and liver MRIs for iron content estimation. Liver T2 was determined by a third-party company. Cardiac and Liver T2* values were measured by an observer. Liver T2* values were calculated using the available liver parenchyma in the cardiac MRI. Linear correlations and Bland-Altman plots were run between liver T2 and T2*, cardiac T2* values; and liver T2* on dedicated cardiac and liver MRIs.

      Results

      139 patients were included. Mean liver T2 and T2* values were 8.6 ± 5.4 ms and 4.5 ± 4.1 ms, respectively. A strong correlation between liver T2 and T2* values was observed (r = 0.96, p < 0.001) with a bias (+4.1 ms). Mean cardiac bright- and dark-blood T2* values were 26.5 ± 12.9 ms and 27.2 ± 11.9 ms, respectively. Cardiac T2* values showed a strong correlation (r = 0.81, p < 0.001) with a low bias (−1.0 ms). The mean liver T2* on liver and cardiac MRIs were 4.9 ± 4.7 ms and 4.6 ± 3.9 ms, respectively. A strong correlation between T2* values was observed (r = 0.96, p < 0.001) with a small bias (−0.2 ms).

      Conclusion

      MRI protocols for iron concentration in the liver and the heart can be simplified to avoid redundant information and reduce scan time. In most patients, a single breath-hold GRE sequence can be used to evaluate the iron concentration in both the liver and heart.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lieu P.T.
        • Heiskala M.
        • Peterson P.A.
        • Yang Y.
        The roles of iron in health and disease.
        Mol Aspects Med. 2001; 22: 1-87
        • Sirlin C.B.
        • Reeder S.B.
        Magnetic resonance imaging quantification of liver iron.
        Magn Reson Imaging Clin N Am. 2010; 18 ([ix]): 359-381
        • Angelucci E.
        • Brittenham G.M.
        • McLaren C.E.
        • Ripalti M.
        • Baronciani D.
        • Giardini C.
        • et al.
        Hepatic iron concentration and total body iron stores in thalassemia major.
        N Engl J Med. 2000; 343: 327-331
        • Bassett M.L.
        • Halliday J.W.
        • Powell L.W.
        Value of hepatic iron measurements in early hemochromatosis and determination of the critical iron level associated with fibrosis.
        Hepatology (Baltimore, MD). 1986; 6: 24-29
        • Stark D.D.
        • Goldberg H.I.
        • Moss A.A.
        • Bass N.M.
        Chronic liver disease: evaluation by magnetic resonance.
        Radiology. 1984; 150: 149-151
        • Towbin A.J.
        • Serai S.D.
        • Podberesky D.J.
        Magnetic resonance imaging of the pediatric liver: imaging of steatosis, iron deposition, and fibrosis.
        Magn Reson Imaging Clin N Am. 2013; 21: 669-680
        • St Pierre T.G.
        • Clark P.R.
        • Chua-anusorn W.
        • Fleming A.J.
        • Jeffrey G.P.
        • Olynyk J.K.
        • et al.
        Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance.
        Blood. 2005; 105: 855-861
        • Chappell K.E.
        • Patel N.
        • Gatehouse P.D.
        • Main J.
        • Puri B.K.
        • Taylor-Robinson S.D.
        • et al.
        Magnetic resonance imaging of the liver with ultrashort TE (UTE) pulse sequences.
        J Magn Reson Imaging. 2003; 18: 709-713
        • Serai S.D.
        • Fleck R.J.
        • Quinn C.T.
        • Zhang B.
        • Podberesky D.J.
        Retrospective comparison of gradient recalled echo R2* and spin-echo R2 magnetic resonance analysis methods for estimating liver iron content in children and adolescents.
        Pediatr Radiol. 2015; 45: 1629-1634
        • Wood J.C.
        • Enriquez C.
        • Ghugre N.
        • Tyzka J.M.
        • Carson S.
        • Nelson M.D.
        • et al.
        MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients.
        Blood. 2005; 106: 1460-1465
        • Westwood M.
        • Anderson L.J.
        • Firmin D.N.
        • Gatehouse P.D.
        • Charrier C.C.
        • Wonke B.
        • et al.
        A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload.
        J Magn Reson Imaging. 2003; 18: 33-39
        • He T.
        Cardiovascular magnetic resonance T2* for tissue iron assessment in the heart.
        Quant Imaging Med Surg. 2014; 4: 407-412
        • Wood J.C.
        Use of magnetic resonance imaging to monitor iron overload.
        Hematol Oncol Clin North Am. 2014; 28: 747-764
        • St Pierre T.G.
        • Clark P.R.
        • Chua-Anusorn W.
        Measurement and mapping of liver iron concentrations using magnetic resonance imaging.
        Ann N Y Acad Sci. 2005; 1054: 379-385
        • Pennell D.J.
        • Udelson J.E.
        • Arai A.E.
        • Bozkurt B.
        • Cohen A.R.
        • Galanello R.
        • et al.
        Cardiovascular function and treatment in beta-thalassemia major: a consensus statement from the American Heart Association.
        Circulation. 2013; 128: 281-308
        • Serai S.D.
        • Trout A.T.
        • Fleck R.J.
        • Quinn C.T.
        • Dillman J.R.
        Measuring liver T2* and cardiac T2* in a single acquisition.
        in: Abdominal Radiology (New York). 2018
        • Tan S.
        • Peng Q.
        • Liszewski M.C.
        • Taragin B.H.
        From the bottom of the heart: measuring liver iron concentration on cardiac MRI.
        Clin Imaging. 2018; 47: 124-129
        • Labranche R.
        • Gilbert G.
        • Cerny M.
        • Vu K.N.
        • Soulieres D.
        • Olivie D.
        • et al.
        Liver Iron quantification with MR imaging: a primer for radiologists.
        Radiographics. 2018; 38: 392-412
        • McCarville M.B.
        • Hillenbrand C.M.
        • Loeffler R.B.
        • Smeltzer M.P.
        • Song R.
        • Li C.S.
        • et al.
        Comparison of whole liver and small region-of-interest measurements of MRI liver R2* in children with iron overload.
        Pediatr Radiol. 2010; 40: 1360-1367
        • Pirasteh A.
        • Yuan Q.
        • Hernando D.
        • Reeder S.B.
        • Pedrosa I.
        • Yokoo T.
        Inter-method reproducibility of biexponential R2 MR relaxometry for estimation of liver iron concentration.
        Magn Reson Med. 2018; 80: 2691-2701
        • St Pierre T.G.
        • Clark P.R.
        • Chua-Anusorn W.
        Single spin-echo proton transverse relaxometry of iron-loaded liver.
        NMR Biomed. 2004; 17: 446-458
        • Brewer C.J.
        • Coates T.D.
        • Wood J.C.
        Spleen R2 and R2* in iron-overloaded patients with sickle cell disease and thalassemia major.
        J Magn Reson Imaging. 2009; 29: 357-364
        • Chandarana H.
        • Lim R.P.
        • Jensen J.H.
        • Hajdu C.H.
        • Losada M.
        • Babb J.S.
        • et al.
        Hepatic iron deposition in patients with liver disease: preliminary experience with breath-hold multiecho T2*-weighted sequence.
        AJR Am J Roentgenol. 2009; 193: 1261-1267
        • Tanimoto A.
        • Oshio K.
        • Suematsu M.
        • Pouliquen D.
        • Stark D.D.
        Relaxation effects of clustered particles.
        J Magn Reson Imaging. 2001; 14: 72-77
        • Doyle E.K.
        • Toy K.
        • Valdez B.
        • Chia J.M.
        • Coates T.
        • Wood J.C.
        Ultra-short echo time images quantify high liver iron.
        Magn Reson Med. 2018; 79: 1579-1585
        • Krafft A.J.
        • Loeffler R.B.
        • Song R.
        • Tipirneni-Sajja A.
        • McCarville M.B.
        • Robson M.D.
        • et al.
        Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 Tesla.
        Magn Reson Med. 2017; 78: 1839-1851
        • Sharma S.D.
        • Fischer R.
        • Schoennagel B.P.
        • Nielsen P.
        • Kooijman H.
        • Yamamura J.
        • et al.
        MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: comparison with SQUID-based biomagnetic liver susceptometry.
        Magn Reson Med. 2017; 78: 264-270
        • Dong J.
        • Liu T.
        • Chen F.
        • Zhou D.
        • Dimov A.
        • Raj A.
        • et al.
        Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping.
        IEEE Trans Med Imaging. 2015; 34: 531-540
        • Hernando D.
        • Kramer J.H.
        • Reeder S.B.
        Multipeak fat-corrected complex R2* relaxometry: theory, optimization, and clinical validation.
        Magn Reson Med. 2013; 70: 1319-1331
        • Serai S.D.
        • Smith E.A.
        • Trout A.T.
        • Dillman J.R.
        Agreement between manual relaxometry and semi-automated scanner-based multi-echo Dixon technique for measuring liver T2* in a pediatric and young adult population.
        Pediatr Radiol. 2018; 48: 94-100
        • Smith G.C.
        • Carpenter J.P.
        • He T.
        • Alam M.H.
        • Firmin D.N.
        • Pennell D.J.
        Value of black blood T2* cardiovascular magnetic resonance.
        J Cardiovasc Magn Reson. 2011; 13: 21
        • Liguori C.
        • Di Giampietro I.
        • Pitocco F.
        • De Vivo A.E.
        • Schena E.
        • Mortato L.
        • et al.
        Dark blood versus bright blood T2 acquisition in cardiovascular magnetic resonance (CMR) for thalassaemia major (TM) patients: evaluation of feasibility, reproducibility and image quality.
        Eur J Radiol. 2014; 83: e8-e14
        • He T.
        • Gatehouse P.D.
        • Kirk P.
        • Tanner M.A.
        • Smith G.C.
        • Keegan J.
        • et al.
        Black-blood T2* technique for myocardial iron measurement in thalassemia.
        J Magn Reson Imaging. 2007; 25: 1205-1209
        • Kirk P.
        • He T.
        • Anderson L.J.
        • Roughton M.
        • Tanner M.A.
        • Lam W.W.
        • et al.
        International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers.
        J Magn Reson Imaging. 2010; 32: 315-319
        • Carpenter J.P.
        • He T.
        • Kirk P.
        • Roughton M.
        • Anderson L.J.
        • de Noronha S.V.
        • et al.
        On T2* magnetic resonance and cardiac iron.
        Circulation. 2011; 123: 1519-1528
        • Messroghli D.R.
        • Moon J.C.
        • Ferreira V.M.
        • Grosse-Wortmann L.
        • He T.
        • Kellman P.
        • et al.
        Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI).
        J Cardiovasc Magn Reson. 2017; 19: 75
        • Mavrogeni S.I.
        • Gotsis E.D.
        • Markussis V.
        • Tsekos N.
        • Politis C.
        • Vretou E.
        • et al.
        T2 relaxation time study of iron overload in b-thalassemia.
        Magma (New York, NY). 1998; 6: 7-12
        • Papanikolaou N.
        • Ghiatas A.
        • Kattamis A.
        • Ladis C.
        • Kritikos N.
        • Kattamis C.
        Non-invasive myocardial iron assessment in thalassaemic patients. T2 relaxometry and magnetization transfer ratio measurements.
        Acta Radiol. 2000; 41: 348-351
        • Meloni A.
        • Luciani A.
        • Positano V.
        • De Marchi D.
        • Valeri G.
        • Restaino G.
        • et al.
        Single region of interest versus multislice T2* MRI approach for the quantification of hepatic iron overload.
        J Magn Reson Imaging. 2011; 33: 348-355
        • Noetzli L.J.
        • Mittelman S.D.
        • Watanabe R.M.
        • Coates T.D.
        • Wood J.C.
        Pancreatic iron and glucose dysregulation in thalassemia major.
        Am J Hematol. 2012; 87: 155-160
        • Hankins J.S.
        • McCarville M.B.
        • Loeffler R.B.
        • Smeltzer M.P.
        • Onciu M.
        • Hoffer F.A.
        • et al.
        R2* magnetic resonance imaging of the liver in patients with iron overload.
        Blood. 2009; 113: 4853-4855
        • Wood J.C.
        • Zhang P.
        • Rienhoff H.
        • Abi-Saab W.
        • Neufeld E.J.
        Liver MRI is more precise than liver biopsy for assessing total body iron balance: a comparison of MRI relaxometry with simulated liver biopsy results.
        Magn Reson Imaging. 2015; 33: 761-767