Advertisement
Breast Imaging| Volume 55, P41-46, May 2019

Ultrasound echogenicity reveals the response of breast cancer to chemotherapy

      Highlights

      • The alteration of the echogenicity of breast cancer tumors during NAC correlated with pathological response.
      • Persistent tumor hypoechogenicity after 3 courses of NAC predicts a poor response to treatment.
      • Lesion size and elasticity were important factors in predicting response to NAC.

      Abstract

      Purpose

      To evaluate the ultrasound (US) response in patients with breast cancer (BC) during neoadjuvant chemotherapy (NAC).

      Methods

      Prospective US analysis was performed on 19 malignant tumors prior to NAC treatment and 7 days after each first four courses of NAC in 13 patients (median age = 57 years). Echogenicity, size, vascularity, and sonoelastography were measured and compared with posttreatment scores of residual cancers burden.

      Results

      Changes in the echogenicity of tumors after 3 courses of NAC had the most statistically strong correlation with the percentage of residual malignant cells used in histopathology to assess the response to treatment (odds ratio = 60, p < 0.05). Changes in lesion size and elasticity were also significant (p < 0.05).

      Conclusions

      There is a statistically significant relationship between breast tumors' echogenicity in US, neoplasm size, and stiffness and the response to NAC. In particular, our results show that the change in tumor echogenicity could predict a pathological response with satisfactory accuracy and may be considered in NAC monitoring.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Morigi C.
        Highlights from the 15th St Gallen International Breast Cancer Conference 15–18 March, 2017, Vienna: tailored treatments for patients with early breast cancer.
        ecancer. 2017; 11: 732https://doi.org/10.3332/ecancer.2017.732
        • Giordano S.H.
        Update on locally advanced breast cancer.
        Oncologist. 2003; 8: 521-530https://doi.org/10.1634/theoncologist.8-6-521
        • Kaufmann M.
        • von Minckwitz G.
        • Mamounas E.
        • Cameron D.
        • Carey L.
        • Cristofanili M.
        • et al.
        Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer.
        Ann Surg Oncol. 2012; 19: 1508-1516https://doi.org/10.1245/s10434-011-2108-2
        • Cortazar P.
        • Zhang L.
        • Untch M.
        • Mehta K.
        • Costantino J.P.
        • Wolmark N.
        • et al.
        Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis.
        Lancet. 2014; 384: 164-172https://doi.org/10.1016/S0140-6736(13)62422-8
        • Dialani V.
        • Chadashvili T.
        • Slanetz P.J.
        Role of imaging in neoadjuvant therapy for breast cancer.
        Ann Surg Oncol. 2015; 22: 1416-1424https://doi.org/10.1245/s10434-015-4403-9
        • Bosh A.M.
        • Kessels A.G.
        • Beets G.L.
        • et al.
        Preoperative estimation of the pathological breast tumor size by physical examination, mammography and ultrasound: a prospective study on 105 invasive tumours.
        Eur J Radiol. 2003; 48: 285-292
        • Gu J.L.
        • Pan S.M.
        • Ren J.
        • Yang Z.X.
        • Jiang G.Q.
        Role of magnetic resonance imaging in detection of pathologic complete remission in breast cancer patients treated with neoadjuvant chemotherapy: a meta-analysis.
        Clin Breast Cancer. 2017; 17: 245-255https://doi.org/10.1016/j.dbc.2016.12.010
        • Evans A.
        • Whelehan P.
        • Thomson A.
        • Purdie C.
        • Jordan L.
        • et al.
        Prediction of pathological response to neoadjuvant chemotherapy for primary breast cancer. Comparing interim ultrasound, shear-wave elastography predict and MRI.
        Ultraschall Med. 2018; 39: 422-431https://doi.org/10.1055/s-0043-111589
        • Evans A.
        • Armstrong S.
        • Whelehan P.
        • Thomson K.
        • Rauchhaus P.
        • Purdie C.
        • et al.
        Can shear-wave elastography predict response to neoadjuvant chemotherapy in women with invasive breast cancer?.
        Br J Cancer. 2013; 109: 2798-2802https://doi.org/10.1038/bjc.2013.660
        • Evans A.
        • Whelehan P.
        • Thompson A.
        • Purdie C.
        • Jordan L.
        • Macaskill J.
        • et al.
        Identification of pathological complete response after neoadjuvant chemotherapy for breast cancer: comparison of greyscale ultrasound, shear wave elastography, and MRI.
        Clin Radiol. 2018; 73: 910.e-910.e6https://doi.org/10.1016/j.crad. 2018. 05. 030
        • Sadeghi-Naini A.
        • Sannachi L.
        • Tadayyon H.
        • Tran W.
        • Slodkowska E.
        • Trudeau M.
        • et al.
        Chemotherapy-response monitoring of breast cancer patients using quantitative ultrasound-based intra-tumour heterogeneities.
        Sci Rep. 2017; 10352https://doi.org/10.1038/s41598-017-09678-0
        • Sannachi L.
        • Tadayyon H.
        • Sadeghi-Naini A.
        • Tran W.
        • Gandhi S.
        • Wright F.
        • et al.
        Non-invasive evaluation of breast cancer response to chemotherapy using quantitative ultrasonic backscatter parameters.
        Med Image Anal. 2015; 20: 224-236https://doi.org/10.1016/j. media.2014.11.009
        • Tadayyon H.
        • Sannachi L.
        • Gangeh M.
        • Sadeghi-Naini A.
        • Tran W.
        • Trudeau M.E.
        • et al.
        Quantitative ultrasound assessment of breast tumor response to chemotherapy using a multi-parameter approach.
        Oncotarget. 2016; 7: 45094-45111https://doi.org/10.18632/oncotarget.8862
        • Hruska D.P.
        • Oelze M.L.
        Improved parameter estimates based on the homodyned K distribution.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2009; 56: 2471-2481https://doi.org/10.1109/TUFFC.2009.1334
        • Tsui P.H.
        • Ma H.Y.
        • Zhou Z.
        • Ho M.C.
        • Le Y.H.
        Window - modulated compounding Nakagami imaging for ultrasound tissue characterization.
        Ultrasonics. 2014; 54: 1448-1459https://doi.org/10.1016/j.ultras.2014.04.024
        • Sannachi L.
        • Gangeh M.
        • Tadayyon H.
        • Sadeghi-Naini A.
        • Gandhi S.
        • Wright F.C.
        • et al.
        Response monitoring of breast cancer patients receiving neoadjuvant chemotherapy using quantitative ultrasound, texture, and molecular features.
        PLoS One. 2018; 13e0189634https://doi.org/10.1371/journal.pone.0189634
        • Sadeghi-Naini A.
        • Papanicolau N.
        • Falou O.
        • Zubovits J.
        • Dent R.
        • Verma S.
        • et al.
        Quantitative ultrasound evaluation of tumor cell death response in locally advanced breast cancer patients receiving chemotherapy.
        Clin Cancer Res. 2013; 19: 2163-2174https://doi.org/10.1158/1078-0432.CCR-12-2965
        • Symmans W.F.
        • Peintinger F.
        • Hatzis C.
        • Rajan R.
        • Kuerer H.
        • Valero V.
        • et al.
        Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy.
        J Clin Oncol. 2007; 25: 4414-4422
        • American College of Radiology
        Breast Imaging Reporting and Data System (BI-RADS) 5.
        American College of Radiology, Reston, VA2013: 141e52
        • Jakubowski W.
        • Dobruch-Sobczak K.
        • Migda B.
        Standards of the Polish Ultrasound Society - update. Sonomammography examination.
        J Ultrasound. 2012; 12: 245-261https://doi.org/10.15557/JoU.2012.0010
        • Barr G.
        • Nakashima K.
        • Amy D.
        • Cosgrove D.
        • Farrokh A.
        • Schafer F.
        • et al.
        WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 2: breast.
        Ultrasound Med Biol. 2015; 41: 1148-1160https://doi.org/10.1016/j.ultrasmedbio.2015.03.008
        • Ma Y.
        • Zhang S.
        • Li J.
        • Li J.
        • Kang Y.
        • Ren W.
        Comparison of strain and shear-wave ultrasounic elastography in predicting the pathological response to neodjuvant chemotherapy.
        Eur Radiol. Jun 2017; 27: 2282-2291https://doi.org/10.1007/s00330-016-4619-5
        • Stavros A.T.
        Breast ultrasound.
        in: Ultrasound of solid breast nodules: distinguishing benign from malignant. 1st ed. Lippincott Williams &Wilkins, Philadelphia2004: 445-527
        • Sadeghi-Naini Ali
        • Zhou Stephanie
        • Gangeh Mehrdad J.
        • Jahedmotlagh Zahra
        • Falou Omar
        • Ranieri Shawn
        • et al.
        Quantitative evaluation of cell death response in vitro and in vivo using conventional-frequency ultrasound.
        Oncoscience. 2015; 2: 716-726https://doi.org/10.18632/oncoscience.235
        • Banihashemi B.
        • Vlad R.
        • Debeljevic B.
        • Giles A.
        • Kolios M.C.
        • Czarnota G.J.
        Ultrasound imaging of apoptosis in tumor response: novel preclinical monitoring of photodynamic therapy effects.
        Cancer Res. 2008; 68: 8590-8596https://doi.org/10.1158/0008-5472.CAN-08-0006
        • Sadeghi-Naini A.
        • et al.
        Low-frequency quantitative ultrasound imaging of cell death in vivo.
        Med Phys. 2013; 40082901https://doi.org/10.1118/1.4812683
        • Matsuda N.
        • Kida K.
        • Ohde S.
        • Suzuki K.
        • Yamauchi H.
        • Nakamura S.
        • et al.
        Change in sonographic brightness can predict pathological response of triple-negative breast cancer to neoadjuvant chemotherapy.
        Breast Cancer. 2018; 25: 43-49https://doi.org/10.1007/s12282-017-0782-z
        • Baumgartner A.
        • Tausch C.
        • Hosch S.
        • Papassotiropoulos B.
        • Varga Z.
        • Rageth C.
        • et al.
        Ultrasound-based prediction of pathologic response to neodjuvant chemotherapy in breast cancer patients.
        Breast. 2018; 39: 19-23https://doi.org/10.1016/j.breast.2018.02.028
        • Marinovich M.L.
        • Houssami N.
        • Macaskill P.
        • et al.
        Meta-analysis of magnetic resonance imaging in detecting residual breast cancer after neoadjuvant therapy.
        J Natl Cancer Inst. 2013; 105: 321-333https://doi.org/10.1093/jnci/djs528
        • Lobbes M.
        • Prevos R.
        • Smidt M.
        Response monitoring of breast cancer patients receiving neoadjuvant chemotherapy using breast MRI – a review of current knowledge.
        J Cancer Ther Res. 2012; 2012: 1-34https://doi.org/10.7243/2049-7962-1-34
        • Dialani V.
        • Chadashvili T.
        • Slanetz P.
        Role of imaging in neodjuvant therapy for breast cancer.
        Ann Surg Oncol. 2015; 22: 1416-1424https://doi.org/10.1245/s10434-015-4403-9