Advertisement

Measurement of the liver iron concentration in transfusional iron overload by MRI R2* and by high-transition-temperature superconducting magnetic susceptometry

      Highlights

      • MRI R2* and magnetic susceptometry are compared in 43 measurements of liver iron.
      • R2* and magnetic susceptometry are significantly correlated considering all patients.
      • R2* and magnetic susceptometry are not correlated with minimal-modest iron overload.

      Abstract

      Purpose

      To compare measurement of the liver iron concentration in patients with transfusional iron overload by magnetic resonance imaging (MRI), using R2*, and by magnetic susceptometry, using a new high-transitiontemperature (high-Tc; operating at 77 K, cooled by liquid nitrogen) superconducting magnetic susceptometer.

      Methods

      In 28 patients with transfusional iron overload, 43 measurements of the liver iron concentration were made by both R2* and high-Tc magnetic susceptometry.

      Results

      Measurements of the liver iron concentration by R2* and high-Tc magnetic susceptometry were significantly correlated when comparing all patients (Pearson's r = 0.91, p < 0.0001) and those with results by susceptometry >7 mg Fe/g liver, dry weight (r = 0.93, p = 0.006). In lower ranges of liver iron, no significant correlations between the two methods were found (0 to <3.2 mg Fe/g liver, dry weight: r = 0.2, p = 0.37; 3.2 to 7 mg Fe/g liver, dry weight: r = 0.41; p = 0.14).

      Conclusion

      The lack of linear correlation between R2* and magnetic susceptibility measurements of the liver iron concentration with minimal or modest iron overload may be due to the effects of fibrosis and other cellular pathology that interfere with R2* but do not appreciably alter magnetic susceptibility.

      Graphical abstract

      Abbreviations:

      MRI (magnetic resonance imaging), LIC (liver iron concentration), Tc (superconducting transition temperature, i.e., the characteristic temperature of a material below which all electrical resistance is lost.), Low-Tc (low-transition-temperature (operating at 4 K, cooled by liquid helium)), High-Tc (high-transition-temperature (operating at 77 K, cooled by liquid nitrogen))

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brittenham G.M.
        Disorders of iron homeostasis: iron deficiency and overload.
        in: Hoffman R.B.E. Silberstein L.E. Heslop H. Weitz J.I. Anastasi J. Salama M.E. Abutalib S.A. Hematology: Basic Principles and Practice. Elsevier, New York2018: 478-490
        • Brittenham G.M.
        Iron-chelating therapy for transfusional iron overload.
        N Engl J Med. 2011; 364: 146-156
        • Coates T.D.
        Physiology and pathophysiology of iron in hemoglobin-associated diseases.
        Free Radic Biol Med. 2014; 72: 23-40
        • Porter J.B.
        • de Witte T.
        • Cappellini M.D.
        • Gattermann N.
        New insights into transfusion-related iron toxicity: implications for the oncologist.
        Crit Rev Oncol Hematol. 2016; 99: 261-271
        • Hoffbrand A.V.
        • Taher A.
        • Cappellini M.D.
        How I treat transfusional iron overload.
        Blood. 2012; 120: 3657-3669
        • Labranche R.
        • Gilbert G.
        • Cerny M.
        • Vu K.N.
        • Soulieres D.
        • Olivie D.
        • et al.
        Liver Iron quantification with MR imaging: a primer for radiologists.
        Radiographics. 2018; 38: 392-412
        • Olivieri N.F.
        • Brittenham G.M.
        Management of the thalassemias.
        Cold Spring Harb Perspect Med. 2013; 3
        • Botzenhardt S.
        • Li N.
        • Chan E.W.
        • Sing C.W.
        • Wong I.C.
        • Neubert A.
        Safety profiles of iron chelators in young patients with haemoglobinopathies.
        Eur J Haematol. 2017; 98: 198-217
        • Diaz-Garcia J.D.
        • Gallegos-Villalobos A.
        • Gonzalez-Espinoza L.
        • Sanchez-Nino M.D.
        • Villarrubia J.
        • Ortiz A.
        Deferasirox nephrotoxicity-the knowns and unknowns.
        Nat Rev Nephrol. 2014; 10: 574-586
        • Martin-Sanchez D.
        • Gallegos-Villalobos A.
        • Fontecha-Barriuso M.
        • Carrasco S.
        • Sanchez-Nino M.D.
        • Lopez-Hernandez F.J.
        • et al.
        Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells.
        Sci Rep. 2017; 7: 41510
        • Ramaswami A.
        • Rosen D.J.
        • Chu J.
        • Wistinghausen B.
        • Arnon R.
        Fulminant liver failure in a child with beta-thalassemia on deferasirox: a case report.
        J Pediatr Hematol Oncol. 2016; 39: 235-237
        • Brittenham G.M.
        • Badman D.G.
        National Institute of D, digestive, kidney diseases W. Noninvasive measurement of iron: report of an NIDDK workshop.
        Blood. 2003; 101: 15-19
        • Wood J.C.
        Estimating tissue iron burden: current status and future prospects.
        Br J Haematol. 2015; 170: 15-28
        • Li J.
        • Lin H.
        • Liu T.
        • Zhang Z.
        • Prince M.R.
        • Gillen K.
        • et al.
        Quantitative susceptibility mapping (QSM) minimizes interference from cellular pathology in R2* estimation of liver iron concentration.
        J Magn Reson Imaging. 2018; 48: 1069-1079
        • Gianesin B.
        • Zefiro D.
        • Musso M.
        • Rosa A.
        • Bruzzone C.
        • Balocco M.
        • et al.
        Measurement of liver iron overload: noninvasive calibration of MRI-R2* by magnetic iron detector susceptometer.
        Magn Reson Med. 2012; 67: 1782-1786
        • Sharma S.D.
        • Fischer R.
        • Schoennagel B.P.
        • Nielsen P.
        • Kooijman H.
        • Yamamura J.
        • et al.
        MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: comparison with SQUID-based biomagnetic liver susceptometry.
        Magn Reson Med. 2017; 78: 264-270
        • Farrell D.E.
        • Allen C.J.
        • Whilden M.W.
        • Kidane T.K.
        • Baig T.N.
        • Tripp J.H.
        • et al.
        A new instrument designed to measure the magnetic susceptibility of human liver tissue in vivo.
        IEEE Trans Magn. 2007; 43: 3543-3554
        • Farrell D.E.
        • Allen C.J.
        • Whilden M.W.
        • Tripp J.H.
        • Usoskin A.
        • Sheth S.
        • et al.
        Magnetic measurement of liver iron stores: engineering aspects of a new scanning susceptometer based on high-temperature superconductivity.
        IEEE Trans Magn. 2007; 43: 4030-4036
        • Brittenham G.M.
        • Farrell D.E.
        • Harris J.W.
        • Feldman E.S.
        • Danish E.H.
        • Muir W.A.
        • et al.
        Magnetic-susceptibility measurement of human iron stores.
        N Engl J Med. 1982; 307: 1671-1675
        • Fischer R.
        • Harmatz P.R.
        Non-invasive assessment of tissue iron overload.
        Hematology Am Soc Hematol Educ Program. 2009; : 215-221
        • Bauman J.H.
        • Harris J.W.
        Estimation of hepatic iron stores by vivo measurement of magnetic susceptibility.
        J Lab Clin Med. 1967; 70: 246-257
        • Shoden A.
        • Sturgeon P.
        Hemosiderin.
        Acta Haematol. 1960; 23: 376-392
        • Meloni A.
        • Rienhoff Jr., H.Y.
        • Jones A.
        • Pepe A.
        • Lombardi M.
        • Wood J.C.
        The use of appropriate calibration curves corrects for systematic differences in liver R2* values measured using different software packages.
        Br J Haematol. 2013; 161: 888-891
        • Bland J.M.
        • Altman D.G.
        Measuring agreement in method comparison studies.
        Stat Methods Med Res. 1999; 8: 135-160
        • Brittenham G.M.
        Reference method for measurement of the hepatic iron concentration.
        Am J Hematol. 2015; 90: 85-86
        • d'Assignies G.
        • Paisant A.
        • Bardou-Jacquet E.
        • Boulic A.
        • Bannier E.
        • Laine F.
        • et al.
        Non-invasive measurement of liver iron concentration using 3-Tesla magnetic resonance imaging: validation against biopsy.
        Eur Radiol. 2018; 28: 2022-2030
        • Gandon Y.
        • Olivie D.
        • Guyader D.
        • Aube C.
        • Oberti F.
        • Sebille V.
        • et al.
        Non-invasive assessment of hepatic iron stores by MRI.
        Lancet. 2004; 363: 357-362
        • Garbowski M.W.
        • Carpenter J.P.
        • Smith G.
        • Roughton M.
        • Alam M.H.
        • He T.
        • et al.
        Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan.
        J Cardiovasc Magn Reson. 2014; 16: 40
        • Hankins J.S.
        • McCarville M.B.
        • Loeffler R.B.
        • Smeltzer M.P.
        • Onciu M.
        • Hoffer F.A.
        • et al.
        R2* magnetic resonance imaging of the liver in patients with iron overload.
        Blood. 2009; 113: 4853-4855
        • McCarville M.B.
        • Hillenbrand C.M.
        • Loeffler R.B.
        • Smeltzer M.P.
        • Song R.
        • Li C.S.
        • et al.
        Comparison of whole liver and small region-of-interest measurements of MRI liver R2* in children with iron overload.
        Pediatr Radiol. 2010; 40: 1360-1367
        • Wood J.C.
        • Enriquez C.
        • Ghugre N.
        • Tyzka J.M.
        • Carson S.
        • Nelson M.D.
        • et al.
        MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients.
        Blood. 2005; 106: 1460-1465
        • Christoforidis A.
        • Perifanis V.
        • Spanos G.
        • Vlachaki E.
        • Economou M.
        • Tsatra I.
        • et al.
        MRI assessment of liver iron content in thalassamic patients with three different protocols: comparisons and correlations.
        Eur J Haematol. 2009; 82: 388-392
        • Henninger B.
        • Zoller H.
        • Rauch S.
        • Finkenstedt A.
        • Schocke M.
        • Jaschke W.
        • et al.
        R2* relaxometry for the quantification of hepatic iron overload: biopsy-based calibration and comparison with the literature.
        RöFo. 2015; 187: 472-479
        • Virtanen J.M.
        • Komu M.E.
        • Parkkola R.K.
        Quantitative liver iron measurement by magnetic resonance imaging: in vitro and in vivo assessment of the liver to muscle signal intensity and the R2* methods.
        Magn Reson Imaging. 2008; 26: 1175-1182
        • St Pierre T.G.
        • Clark P.R.
        • Chua-anusorn W.
        • Fleming A.J.
        • Jeffrey G.P.
        • Olynyk J.K.
        • et al.
        Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance.
        Blood. 2005; 105: 855-861
        • Brittenham G.M.
        • Sheth S.
        • Allen C.J.
        • Farrell D.E.
        Noninvasive methods for quantitative assessment of transfusional iron overload in sickle cell disease.
        Semin Hematol. 2001; 38: 37-56
        • Jensen J.H.
        • Chandra R.
        Strong field behavior of the NMR signal from magnetically heterogeneous tissues.
        Magn Reson Med. 2000; 43: 226-236
        • Hocq A.
        • Luhmer M.
        • Saussez S.
        • Louryan S.
        • Gillis P.
        • Gossuin Y.
        Effect of magnetic field and iron content on NMR proton relaxation of liver, spleen and brain tissues.
        Contrast Media Mol Imaging. 2015; 10: 144-152
        • de Rochefort L.
        • Liu T.
        • Kressler B.
        • Liu J.
        • Spincemaille P.
        • Lebon V.
        • et al.
        Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application to brain imaging.
        Magn Reson Med. 2010; 63: 194-206
        • Zhou D.
        • Liu T.
        • Spincemaille P.
        • Wang Y.
        Background field removal by solving the Laplacian boundary value problem.
        NMR Biomed. 2014; 27: 312-319
        • Wang Y.
        • Liu T.
        Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker.
        Magn Reson Med. 2015; 73: 82-101
        • Li J.
        • Chang S.
        • Liu T.
        • Wang Q.
        • Cui D.
        • Chen X.
        • et al.
        Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping.
        Magn Reson Med. 2012; 68: 1563-1569
        • Wang Y.
        • Spincemaille P.
        • Liu Z.
        • Dimov A.
        • Deh K.
        • Li J.
        • et al.
        Clinical quantitative susceptibility mapping (QSM): biometal imaging and its emerging roles in patient care.
        J Magn Reson Imaging. 2017; 46: 951-971
        • Du G.
        • Liu T.
        • Lewis M.M.
        • Kong L.
        • Wang Y.
        • Connor J.
        • et al.
        Quantitative susceptibility mapping of the midbrain in Parkinson's disease.
        Mov Disord. 2016; 31: 317-324
        • Barbosa J.H.
        • Santos A.C.
        • Tumas V.
        • Liu M.
        • Zheng W.
        • Haacke E.M.
        • et al.
        Quantifying brain iron deposition in patients with Parkinson's disease using quantitative susceptibility mapping, R2 and R2.
        Magn Reson Imaging. 2015; 33: 559-565
        • St Pierre T.G.
        • El-Beshlawy A.
        • Elalfy M.
        • Al Jefri A.
        • Al Zir K.
        • Daar S.
        • et al.
        Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration.
        Magn Reson Med. 2014; 71: 2215-2223
        • Wood J.C.
        • Zhang P.
        • Rienhoff H.
        • Abi-Saab W.
        • Neufeld E.J.
        Liver MRI is more precise than liver biopsy for assessing total body iron balance: a comparison of MRI relaxometry with simulated liver biopsy results.
        Magn Reson Imaging. 2015; 33: 761-767