Advertisement

Multi-phase 3D arterial spin labeling brain MRI in assessing cerebral blood perfusion and arterial transit times in children at 3T

Published:November 06, 2018DOI:https://doi.org/10.1016/j.clinimag.2018.11.001

      Abstract

      Background

      3D pseudocontinuous arterial spin labeling (pCASL) with a single post-labeling delay time is commonly used to measure cerebral blood flow (CBF). Multi-phase pCASL has been developed to simultaneously estimate CBF and arterial transit time (ATT).

      Purpose

      To evaluate the clinical feasibility of multi-phase 3D pCASL in pediatric patients, and to compare the estimation of ATT and CBF via linear weighted-delay and traditional non-linear iterative curve-fitting routines.

      Material & methods

      Forty patients (average age: 8.6 y, 5 d–22.4 y) referred for routine brain MRI underwent additional 5–7 min of pCASL scans at 3T using 5 PLDs between 300 and 2300 ms. Data were post-processed by two algorithms for estimating CBF and ATT. Average CBF and ATT values were computed for vascular territories including the anterior, middle and posterior cerebral arteries as well as regions based on the Alberta Stroke Program Early CT Score template. Pearson correlation coefficients and linear regression were used for statistical analysis. The clinical value of multi-phase CASL was evaluated by a neuroradiologist based on asymmetric CBF and ATT maps in patients.

      Results

      All pCASL scans were successfully completed, generating diagnostic results. CBF computed from weighted-delay and curve-fitting methods agreed strongly, with Pearson correlation coefficients ranging from 0.97–0.99 across the measured regions (p < 0.05). Correlation coefficients for ATT ranged from 0.87–0.96 (p < 0.05). CBF and ATT maps were found to add valuable information to clinical diagnosis in 17 of 40 pediatric patients.

      Conclusion

      Our preliminary results demonstrate the feasibility and potential clinical utility of multi-phase pCASL for simultaneous CBF and ATT quantification in pediatric patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ho M.L.
        Arterial spin labeling: clinical applications.
        J Neuroradiol. 2018; https://doi.org/10.1016/j.neurad.2018.06.003
        • Havsteen I.
        • Nybing J.
        • Christensen H.
        • Christensen A.F.
        Acta Radiol. 2018; https://doi.org/10.1177/0284185117752552
        • Hernandez-Garcia L.
        • Lahiri A.
        • Schollenberger J.
        Recent progress in ASL.
        Neuroimage. 2018; https://doi.org/10.1016/j.neuroimage.2017.12.095
        • Jezzard P.
        • Chappell M.A.
        • Okell T.W.
        Arterial spin labeling for the measurement of cerebral perfusion and angiography.
        J Cereb Blood Flow Metab. 2018; 38: 603-626
        • Zun Z.
        • Limperopoulos C.
        Placental perfusion imaging using velocity-selective arterial spin labeling.
        Magn Reson Med. 2018; 80: 1036-1047
        • Shao X.
        • Liu D.
        • Martin T.
        • et al.
        Measuring human placental blood flow with multidelay 3D GRASE pseudocontinuous arterial spin labeling at 3T.
        J Magn Reson Imaging. 2018; 47: 1667-1676
        • Campbell-Washburn A.E.
        • Zhang H.
        • Siow B.M.
        • et al.
        Multislice cardiac arterial spin labeling using improved myocardial perfusion quantification with simultaneously measured blood pool input function.
        Magn Reson Med. 2013; 70: 1125-1136
        • Kober F.
        • Jao T.
        • Tralen T.
        • Nayak K.S.
        Myocardial arterial spin labeling.
        J Cardiovasc Magn Reson. 2016; https://doi.org/10.1186/s12968-016-0235-4
        • Nery F.
        • Gordon I.
        • Thomas D.L.
        Non-invasive renal perfusion imaging using arterial spin labeling MRI: challenges and opportunities.
        Diagnostics (Basel). 2018; https://doi.org/10.3390/diagnostics8010002
        • Alsop D.C.
        • Detre J.A.
        • Golay X.
        • et al.
        Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia.
        Magn Reson Med. 2015; 73: 102-116
      1. Lee S, Yun TJ, Yoo RE, et al. Monitoring cerebral perfusion changes after revascularization patients with Moyamoya disease by using arterial spin-labeling MR imaging. Radiology;228:565–572.

        • Juttukonda M.R.
        • Jordan L.C.
        • Gindville M.C.
        • et al.
        Cerebral hemodynamics and pseudo-continuous arterial spin labeling considerations in adults with sickle cell anemia.
        NMR Biomed. 2017; 30https://doi.org/10.1002/nbm.3681
        • Taki Y.
        • Hashizume H.
        • Sassa Y.
        • et al.
        Correlation between gray matter density-adjusted brain perfusion and age using brain MR images of 202 healthy children.
        Hum Brain Mapp. 2011; 32: 1973-1985
        • Carsin-Vu A.
        • Corouge I.
        • Commowick O.
        • et al.
        Measurement of pediatric regional cerebral blood flow from 6 months to 15 years of age in a clinical population.
        Eur J Radiol. 2018; 101: 38-44
        • Liu F.
        • Duan Y.
        • Peterson B.S.
        • et al.
        Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.
        Eur J Paediatr Neurol. 2018; 22: 642-651
        • Shen Y.
        • Zhao B.
        • Yan L.
        • et al.
        Cerebral hemodynamic and white matter changes of Type 2 diabetes revealed by multi-TI arterial spin labeling and double inversion recovery sequence.
        Front Neurol. 2017; https://doi.org/10.3389/fneur.2017.00717
        • Yun T.J.
        • Sohn C.H.
        • Yoo R.E.
        • et al.
        Transit time corrected arterial spin labeling technique aids to overcome delayed transit time effects.
        Neuroradiology. 2018; 60: 255-265
        • Boland M.
        • Stirnberg R.
        • Pracht E.D.
        • et al.
        Accelerated 3D-GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling.
        Magn Reson Med. 2018; https://doi.org/10.1002/mrm.27226
        • Wolfe M.E.
        • Layer V.
        • Gregori J.
        • et al.
        Assessment of perfusion deficits in ischemic stroke using 3D-GRASE arterial spin labeling magnetic resonance imaging with multiple inflow times.
        J Neuroimaging. 2014; 24: 453-459
        • Martin Z.
        • Madai V.I.
        • Samson-Himmelstjerna F.C.
        • et al.
        3D GRASE pulsed arterial spin labeling at multiple inflow times in patients with long arterial transit times: comparison with dynamic susceptibility-weighted contrast-enhanced MRI at 3 Tesla.
        J Cereb Blood Flow Metab. 2015; 35: 392-401
        • Federau C.
        • Christensen S.
        • Zun Z.
        • et al.
        Cerebral blood flow, transit time, and apparent diffusion coefficient in Moyamoya disease before and after acetazolamide.
        Neuroradiology. 2017; 59: 5-12
        • Wang R.
        • Yu S.
        • Alger J.R.
        • et al.
        Multi-delay arterial spin labeling perfusion MRI in Moyamoya disease – comparison with CT perfusion imaging.
        Eur Radiol. 2014; 24: 1135-1144
        • Wang D.J.
        • Alger J.R.
        • Qiao J.X.
        • et al.
        Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke – comparison with dynamic susceptibility contrast enhanced perfusion imaging.
        Neuroimaging Clin N Am. 2013; 3: 1-7
        • Lou X.
        • Yu S.
        • Scalzo F.
        • et al.
        Multi-delay ASL can identify leptomeningeal collateral perfusion in endovascular therapy of ischemic stroke.
        Oncotarget. 2017; 8: 2437-2443
        • Chen G.
        • Lei D.
        • Ren J.
        • et al.
        Patterns of postictal cerebral perfusion in idiopathic generalized epilepsy: a multi-delay multi-parametric arterial spin labelling perfusion MRI study.
        Sci Rep. 2016; https://doi.org/10.1038/srep28867
        • Choi H.J.
        • Sohn C.H.
        • You S.H.
        • et al.
        Can arterial spin-labeling with multiple postlabeling delays predict cerebrovascular reserve?.
        AJNR Am J Neuroradiol. 2017; https://doi.org/10.3174/ajnr.A5439
        • MacIntosh B.J.
        • Pattinson K.T.
        • Gallichan D.
        • et al.
        Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D GRASE MRI with pulsed arterial spin labelling.
        J Cereb Blood Flow Metab. 2008; 28: 1514-1522
        • Shao X.
        • Tisdall M.D.
        • Wang D.J.
        • van der Kouwe A.J.W.
        Prospective motion correction for 3D GRASE pCASL with volumetric navigators.
        Proc Int Soc Magn Reson Med Sci Meet Exhib. 2017; 25: 0680
        • Buxton R.B.
        • Frank L.R.
        • Wong E.C.
        • Siewert B.
        • Warach S.
        • Edelman R.R.
        A general kinetic model for quantitative perfusion imaging with arterial spin labeling.
        Magn Reson Med. 1998; 40: 383-396
        • Ji J.
        • Pham V.
        • Zhu X.P.
        • Li K.I.
        Parameter estimation in arterial spin labeling MRI: comparing the four phase model and the Buxton model with Fourier transform.
        Quant Imaging Med Surg. 2011; 1: 17-23
        • Buxton R.B.
        Quantifying CBF with arterial spin labeling.
        J Magn Reson Imaging. 2005; 22: 723-726
        • Dai W.
        • Robson P.M.
        • Shankaranarayanan A.
        • Alsop D.C.
        Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging.
        Magn Reson Med. 2012; 67: 1252-1265
        • Aviv R.I.
        • Mandelcorn J.
        • Chakraborty S.
        • et al.
        Alberta stroke program early CT scoring of CT perfusion in early stroke visualization and assessment.
        AJNR Am J Neuroradiol. 2007; 28: 1975-1980
        • Yu S.
        • Ma S.J.
        • Liebeskind D.S.
        • et al.
        ASPECTS-based reperfusion status on arterial spin labeling is associated with clinical outcome in acute ischemic stroke patients.
        J Cereb Blood Flow Metab. 2018; 38: 382-392
        • Van der Thiel M.
        • Rodriguez C.
        • Giannakopoulos P.
        • et al.
        Brain perfusion measurements using multidelay arterial spin-labeling are systematically biased by the number of delays.
        AJNR Am J Neuroradiol. 2018; 39: 1432-1438
        • Shao X.
        • Wang D.J.
        Single shot high resolution 3D arterial spin labeling using 2D CAIPI and ESPIRiT reconstruction.
        Proc Int Soc Magn Reson Med. 2017; 25: 3629
      2. Feinberg DA, Beckett A, Chen L. Arterial spin labeling with simultaneous multi-slice echo planar imaging. Magn Reson Med 70;1500–1506.

        • Su P.
        • Mao D.
        • Liu P.
        • Li Y.
        • Pinho M.C.
        • Welch B.G.
        • et al.
        Multiparametric estimation of bray hemodynamics with MR fingerprinting ASL.
        Magn Reson Med. 2017; 78: 1812-1823
        • Wright K.L.
        • Jiang Y.
        • Ma D.
        • Noll D.C.
        • Griswold M.A.
        • Gulani V.
        • et al.
        Estimation of perfusion properties with MR fingerprinting arterial spin labeling.
        Magn Reson Med. 2018; 50: 68-77
        • Harreld J.H.
        • Helton K.J.
        • Kaddoum R.N.
        • et al.
        The effects of propofol on cerebral perfusion MRI in children.
        Neuroradiology. 2013; 55: 1049-1056