Advertisement

A review of computer aided detection in mammography

  • Author Footnotes
    1 These authors contributed equally to this work.
    Janine Katzen
    Correspondence
    Corresponding author.
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Department of Radiology, Weill Cornell Medicine, 425 E 61st Street, New York, NY 10065, United States of America
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Katerina Dodelzon
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Department of Radiology, Weill Cornell Medicine, 425 E 61st Street, New York, NY 10065, United States of America
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
Published:September 06, 2018DOI:https://doi.org/10.1016/j.clinimag.2018.08.014

      Highlights

      • Computer aided detection (CAD) is a technique that utilizes pattern recognition to mark suspicious lesions for the radiologist to review.
      • Although the usage of CAD has steadily increased and is now widespread, studies demonstrate mixed data on the software's diagnostic performance.
      • Potential benefits of CAD are seen with earlier stage at diagnosis, increased detection of DCIS and invasive lobular carcinoma.

      Abstract

      Breast screening with mammography is widely recognized as the most effective method of detecting early breast cancer and has consistently demonstrated a 20–40% decrease in mortality among screened women. Despite this, the sensitivity of mammography ranges between 70 and 90%. Computer aided detection (CAD) is an artificial intelligence (AI) technique that utilizes pattern recognition to highlight suspicious features on imaging and marks them for the radiologist to review and interpret. It aims to decrease oversights made by interpreting radiologists. Here we review the efficacy of CAD and potential future directions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marmot M.G.
        • Altman D.G.
        • Cameron D.A.
        • et al.
        The benefits and harms of breast cancer screening: an independent review. Independent UK Panel on Breast Cancer Screening.
        Lancet. 2012 Nov 17; 380: 1778-1786
        • Broeders M.
        • Moss S.
        • Nystrom L.
        • et al.
        The impact of mammographic screening on breast cancer mortality in Europe: a review of observational studies.
        J Med Screen. 2012; 19: 14-25
        • Coldman A.
        • Phillips N.
        • Wilson C.
        • et al.
        Pan-Canadian study of mammography screening and mortality from breast cancer.
        J Natl Cancer Inst. 2015; 107
        • Webb M.L.
        • Cady B.
        • Michaelson J.S.
        • et al.
        A failure analysis of invasive breast cancer most deaths from disease occur in women not regularly screened.
        Cancer. Sept 2014 15; 120: 2839-2846
        • Mushlin A.I.
        • Kouides R.W.
        • Shapiro D.E.
        Estimating the accuracy of screening mammography: a meta-analysis.
        Am J Prev Med. 1998; 14: 143-153
        • Pisano E.D.
        • Gastonis C.
        • Hendrick E.
        • et al.
        Diagnostic performance of digital versus film mammography for breast cancer screening.
        N Engl J Med. 2005; 353: 1773-1783
        • Skaane P.
        Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: updated review.
        Acta Radiol. 2009; 50: 3-14
        • Lei J.
        • Yang P.
        • Zhang L.
        • Wang Y.
        • Yang K.
        Diagnostic accuracy of digital breast tomosynthesis versus digital mammography for benign and malignant lesions in breasts: a meta-analysis.
        Eur Radiol. 2014 Mar; 24: 595-602
        • Hoff S.R.
        • Samset J.H.
        • Abrahamsen A.L.
        • et al.
        Missed and true interval and screen-detected breast cancers in a population based screening program.
        Acad Radiol. 2011; 18: 454-460
        • Yankaskas B.C.
        • Schell M.J.
        • Bird R.E.
        • et al.
        Reassessment of breast cancers missed during routine screening mammography: a community-based study.
        Am J Roentgenol. 2001; 177: 535-541
        • Martin J.E.
        • Moskowitz M.
        • Milbrath J.R.
        Breast cancer missed by mammography.
        Am J Roentgenol. 1979; 132: 737-739
        • Bird R.E.
        • Wallace T.W.
        • Yankaskas B.C.
        Analysis of cancers missed at screening mammography.
        Radiology. 1992; 184: 613-617
        • FDA US Food and Drug Administration
        Medical Devices.
        (Available from:)
        • Doi K.
        Computer-aided diagnosis in medical imaging: historical review, current status and future potential.
        Comput Med Imaging Graph. 2017; 31: 198-211
        • Halalli Bhagirathi
        • Makandar Aziz
        Computer Aided Diagnosis - Medical Image Analysis Techniques, Breast Imaging.
        in: Kuzmiak Cherie M. IntechOpen. January 17th 2018https://doi.org/10.5772/intechopen.69792 (Available from: https://www.intechopen.com/books/breast-imaging/computer-aided-diagnosis-medical-image-analysis-techniques)
      1. Medicare, Medicaid, and SCHIP benefits improvement and protection act of 2000, HR 5661, §104.
        • Keen J.D.
        • Keen J.M.
        • Keen J.E.
        Utilization of computer-aided detection for digital screening mammography in the United States, 2008 to 2016.
        15:1. JACR, 2018: 44-48
        • Fenton J.J.
        • Xing G.
        • Elmore J.G.
        • Bang H.
        • Chen S.L.
        • Lindfors K.K.
        • et al.
        Short-term outcomes of screening mammography using computer-aided detection: a population-based study of Medicare enrollees.
        Ann Intern Med. 2013; 158: 580-587
        • American College of Radiology
        ACR Practice Parameter for the Performance of Screening and Diagnostic Mammography.
        2018 (Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/Screen-Diag-Mammo.pdf?la=en)
        Date accessed: July 25, 2018
        • Thurfjell E.L.
        • Lernevall K.A.
        • Taube A.A.
        Benefit of independent double reading in a population-based mammography screening program.
        Radiology. 1994; 191: 241-244
        • Dinnes J.
        • Moss S.
        • Melia J.
        • Blanks R.
        • Song F.
        • Kleijnen J.
        Effectiveness and cost-effectiveness of double reading of mammograms in breast cancer screening: findings of a systematic review.
        The Breast. 2001; 10: 455-463
        • Sato M.
        • Kawai M.
        • Nishino Y.
        • Shibuya D.
        • Ohuchi N.
        • Ishibashi T.
        Cost-effectiveness analysis for breast cancer screening: double reading versus single + CAD reading.
        in: Breast Cancer. 21. Springer Japan, 2014: 532-541
        • Posso M.C.
        • Puig T.
        • Quintana M.J.
        • Solà-Roca J.
        • Bonfill X.
        Double versus single reading of mammograms in a breast cancer screening programme: a cost-consequence analysis.
        Eur Radiol. 2016; 26: 3262-3271
        • Posso M.
        • Carles M.
        • Rué M.
        • Puig T.
        • Bonfill X.
        MEL Consolaro Cost-effectiveness of double reading versus single reading of mammograms in a breast cancer screening programme. 11(7). PLoS ONE, 2016: e0159806https://doi.org/10.1371/journal.pone.0159806
        • Gilbert F.J.
        • Astley S.M.
        • McGee M.A.
        • et al.
        Single reading with computer-aided detection and double reading of screening mammograms in the United Kingdom National Breast Screening Program.
        Radiology. 2006; 241: 47-53
        • Gromet M.
        Comparison of computer-aided detection to double reading of screening mammograms: review of 231,221 mammograms.
        AJR Am J Roentgenol. 2008; 190: 854-859
        • Georgian-Smith D.
        • Moore R.H.
        • Halpern E.
        • et al.
        Blinded comparison of computer-aided detection with human second reading in screening mammography.
        AJR Am J Roentgenol. 2007; 189: 1135-1141
        • Taylor P.
        • Potts H.W.
        Computer aids and human second reading as interventions in screening mammography: two systematic reviews to compare effects on cancer detection and recall rate.
        Eur J Cancer. 2008; 44: 798-807
        • Cole E.B.
        • Zhang Z.
        • Marques H.S.
        • et al.
        Impact of computer-aided detection systems on radiologist accuracy with digital mammography.
        Am J Roentgenol. 2014; 203: 909-916
        • Yang S.K.
        • Moon W.K.
        • Cho N.
        • Park J.S.
        • Cha J.H.
        • Kim S.M.
        • et al.
        Screening mammography-detected cancers: sensitivity of a computer-aided detection system applied to full-field digital mammograms.
        Radiology. 2007; 244: 104-111https://doi.org/10.1148/radiol.2441060756
        • Murakami R.
        • Kumita S.
        • Tani H.
        • Yoshida T.
        • Sugizaki K.
        • Kuwako T.
        • et al.
        Detection of breast cancer with a computer-aided detection applied to full-field digital mammography.
        J Digit Imaging. 2013; 26: 768-773
        • Sadaf A.
        • Crystal P.
        • Scaranelo A.
        • Helbich T.
        Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers.
        Eur J Radiol. 2011; 77: 457-461
        • Malich A.
        • Sauner D.
        • Marx C.
        • Facius M.
        • Boehm T.
        • Pfleiderer S.O.
        • et al.
        Influence of breast lesion size and histologic findings on tumor detection rate of a computer-aided detection system.
        Radiology. 2003; 228: 851-856
        • Baker J.A.
        • Rosen E.L.
        • Lo J.Y.
        • Gimenez E.I.
        • Walsh R.
        • Soo M.S.
        Computer-aided detection (CAD) in screening mammography: sensitivity of commercial CAD systems for detecting architectural distortion.
        AJR Am J Roentgenol. 2003; 181: 1083-1088
        • Cole E.B.
        • Zhang Z.
        • Marques H.S.
        • et al.
        Assessing the stand-alone sensitivity of computer-aided detection with cancer cases from the Digital Mammographic Imaging Screening Trial.
        AJR Am J Roentgenol. 2012; 199: W392-W401
        • Scaranelo A.
        • Eiada R.
        • Bukhanov K.
        • et al.
        Evaluation of breast amorphous calcifications by a computer-aided detection system in full-field digital mammography.
        Br J Radiol. 2012 May; 85: 517-522
        • Lehman C.D.
        • Wellman R.D.
        • Buist D.S.M.
        • et al.
        Diagnostic accuracy of digital screening mammography with and without computer-aided detection.
        JAMA Intern Med. 2015; 175: 1828-1837
        • Bolivar A.V.
        • Gomez S.S.
        • Merino P.
        • Alonso-Bartolome P.
        • Garcia E.O.
        • Cacho P.M.
        • et al.
        Computer-aided detection system applied to full-field digital mammograms.
        Acta Radiol. 2010; 51: 1086-1092
        • Taplin S.H.
        • Rutter C.M.
        • Lehman C.D.
        Testing the effect of computer-assisted detection on interpretive performance in screening mammography.
        AJR Am J Roentgenol. 2006; 187: 1475-1482
        • Kim S.J.
        • Moon W.K.
        • Cho N.
        • Cha J.H.
        • Kim S.M.
        • Im J.G.
        Computer-aided detection in full-field digital mammography: sensitivity and reproducibility in serial examinations.
        Radiology. 2008; 246: 71-80
        • Schilling K.J.
        • Hoffmeister J.W.
        • Friedmann E.
        • McGinnis R.
        • Holcomb R.G.
        Detection of breast cancer with full-field digital mammography and computer-aided detection.
        AJR Am J Roentgenol. 2009; 192: 337-340https://doi.org/10.2214/AJR.07.3884
        • Evans W.P.
        • Warren Burhenne L.J.
        • Laurie L.
        • O'Shaughnessy K.F.
        • Castellino R.A.
        Invasive lobular carcinoma of the breast: mammographic characteristics and computer-aided detection.
        Radiology. 2002; 225: 182-189
        • Fenton J.J.
        • Taplin S.H.
        • Carney P.A.
        • Abraham L.
        • Sickles E.A.
        • D'Orsi C.
        • et al.
        Influence of computer-aided detection on performance of screening mammography.
        N Engl J Med. 2007; 356: 1399-1409
        • Huo Z.
        • Giger M.L.
        • Vyborny C.J.
        • Metz C.E.
        Breast cancer: effectiveness of computer-aided diagnosis—observer study with independent database of mammograms.
        Radiology. 2002; 224: 560-568
        • Freer T.W.
        • Ulissey M.J.
        Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center.
        Radiology. 2001; 220: 781-786
        • Morton M.J.
        • Whaley D.H.
        • Brandt K.R.
        • Amrami K.K.
        Screening mammograms: interpretation with computer-aided detection—prospective evaluation.
        Radiology. 2006; 239: 375-383
        • Cupples T.E.
        • Cunningham J.E.
        • Reynolds J.C.
        Impact of computer-aided detection in a regional screening mammography program.
        Am J Roentgenol. 2005; 185: 944-950
        • Birdwell R.L.
        • Bandodkar P.
        • Ikeda D.M.
        Computer-aided detection with screening mammography in a university hospital setting.
        Radiology. 2005; 236: 451-457
        • Ko J.M.
        • Nicholas M.J.
        • Mendel J.B.
        • Slanetz P.J.
        Prospective assessment of computer-aided detection in interpretation of screening mammography.
        AJR Am J Roentgenol. 2006; 187: 1483-1491
        • Dean J.C.
        • Ilvento C.C.
        Improved cancer detection using computer-aided detection with diagnostic and screening mammography: prospective study of 104 cancers.
        AJR Am J Roentgenol. 2006; 187: 20-28
        • Gur D.
        • Sumkin J.H.
        • Rockette H.E.
        • Ganott M.
        • Hakim C.
        • Hardesty L.
        • et al.
        Changes in breast cancer detection and mammography recall rates after the introduction of a computer-aided detection system.
        J Natl Cancer Inst. 2004; 96: 185-190
        • Brancato B.
        • Houssami N.
        • Francesca D.
        • Bianchi S.
        • Risso G.
        • Catarzi S.
        • et al.
        Does computer-aided detection (CAD) contribute to the performance of digital mammography in a self-referred population?.
        Breast Cancer Res Treat. 2008; 111: 373-376
        • Cho K.R.
        • Seo B.K.
        • Woo O.H.
        • et al.
        Breast cancer detection in a screening population: comparison of digital mammography, computer-aided detection applied to digital mammography and breast ultrasound.
        J Breast Cancer. 2016. Sep; 19: 316-323
        • Birdwell R.L.
        • Ikeda D.M.
        • O'Shaughnessy K.F.
        • Sickles E.A.
        Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection.
        Radiology. 2001; 219: 192-202
        • Fenton J.J.
        • Lee C.I.
        • Xing G.
        • et al.
        Computer-aided detection in mammography downstream effect on diagnostic testing, ductal carcinoma in situ treatment, and costs.
        JAMA Intern Med. 2014; 174: 2032-2034
        • Rafferty E.A.
        • et al.
        Diagnostic accuracy and recall rates for digital mammography and digital mammography combined with one-view and two-view tomosynthesis: results of an enriched reader study.
        AJR Am J Roentgenol. 2014; 202: 273-281
        • Skaane P.
        • Bandos A.I.
        • Gullien R.
        • et al.
        Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program.
        Radiology. 2013; 267: 47-56
        • Rafferty E.A.
        • Park J.M.
        • Philpotts L.E.
        • et al.
        Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: results of a multicenter, multireader trial.
        Radiology. 2013; 266: 104-113
        • McDonald E.S.
        • McCarthy A.M.
        • Akhtar A.L.
        • et al.
        Baseline screening mammography: performance of full-field digital mammography versus digital breast tomosynthesis.
        Am J Roentgenol. 2015; 205: 1143-1148
        • Hardesty L.A.
        • Kreidler S.M.
        • Glueck D.H.
        Digital breast tomosynthesis utilization in the United States: a survey of physician members of the society of breast imaging.
        JACR. 2016; 13: R67-R73
        • Svah T.M.
        • Houssami N.
        • Sechopoulos I.
        • et al.
        Review of radiation dose estimates in digital breast tomosynthesis relative to two-view full-field digital mammography.
        The Breast. 2015; 24: 93-99
        • Gur D.
        • Zuley M.L.
        • Anello M.I.
        • et al.
        Dose reduction in digital breast tomosynthesis (DBT) screening using synthetically reconstructed projection images: an observer performance study.
        Acad Radiol. 2012; 19: 166-171
        • Dang P.A.
        • Freer P.E.
        • Humphrey K.L.
        • Halpern E.F.
        • Rafferty E.A.
        Addition of tomosynthesis to conventional digital mammography: effect on image interpretation time of screening examinations.
        Radiology. 2014; 270: 49-56
        • Bernardi D.
        • Ciatto S.
        • Pellegrini M.
        • et al.
        Application of breast tomosynthesis in screening: incremental effect on mammography acquisition and reading time.
        Br J Radiol. 2012; 85: e1174-e1178
        • Caumo F.
        • Zorzi M.
        • Brunelli S.
        • et al.
        Digital breast tomosynthesis with synthesized two-dimensional images versus full-field digital mammography for population screening: outcomes from the Verona screening program.
        Radiology. 2018; 287 (ahead of print, accessed on 2/7/2018): 37-46
        • Chan H.P.
        • Wei J.
        • Zhang Y.
        • et al.
        Computer-aided detection of masses in digital tomosynthesis mammography: comparison of three approaches.
        Med Phys. 2008; 35: 4087-4095
        • Chan H.P.
        • Wei J.
        • Sahiner B.
        • et al.
        Computer-aided detection system for breast masses on digital tomosynthesis mammograms: preliminary experience.
        Radiology. 2005; 237: 1075-1080
        • Benedikt R.A.
        • Boatsman J.E.
        • Swann C.A.
        • et al.
        Concurrent computer-aided detection improves reading time of digital breast tomosynthesis and maintains interpretation performance in a multireader multicase study.
        AJR. 2018; 210: 685-697
        • US Food and Drug Administration
      2. iCAD White Paper.
        • Spangler M.L.
        • Zuley M.L.
        • Sumkin J.H.
        • Abrams G.
        • Ganott M.A.
        • Hakim C.
        • et al.
        Detection and classification of calcifications on digital breast tomosynthesis and 2D digital mammography: a comparison.
        Am J Roentgenol. 2011; 196: 320-324
        • Poplack S.P.
        • Tosteson T.D.
        • Kogel C.A.
        • Nagy H.M.
        Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography.
        Am J Roentgenol. 2007; 189: 616-623
        • Kopans D.
        • Gavenonis S.
        • Halpern E.
        • Moore R.
        Calcifications in the breast and digital breast tomosynthesis.
        Breast J. 2011; 17: 638-644
        • Wei J.
        • Chan H.P.
        • Hadjiiski L.M.
        • Helvie M.A.
        • Lu Y.
        • Zhou C.
        • et al.
        Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis.
        Med Phys. 2014; 41041913
        • Sahiner B.
        • Chan H.P.
        • Hadjiiski L.M.
        • Helvie M.A.
        • Wei J.
        • Zhou C.
        • et al.
        Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: a 3D approach.
        Med Phys. 2012; 39: 28-39
        • Samala R.K.
        • Chan H.P.
        • Hadjiski L.M.
        • et al.
        Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis.
        Phys Med Biol. 2016; 61: 7092-7112
        • Morra L.
        • Sacchetto D.
        • Duirando M.
        • et al.
        Breast cancer: computer-aided detection with digital breast tomosynthesis.
        Radiology. 2015; 277: 56-63
        • Balleyguier C.
        • Arfi-Rouche J.
        • Levy L.
        • et al.
        Improving digital breast tomosynthesis reading time: a pilot multi-reader, multi-case study using concurrent Computer-Aided Detection (CAD).
        Eur J Radiol. 2017 Dec; 97: 83-89
        • Kohli A.
        • Jha S.
        Why CAD failed in mammography.
        JACR. Mar 2018; 15: 535-537
        • Gillies Robert J.
        • Kinahan Paul E.
        • Hricak Hedvig
        Radiomics: images are more than pictures, they are data.
        Radiology. Feb 2016; 278: 563-577