Wideband LGE MRI permits unobstructed viewing of myocardial scarring in a patient with an MR-conditional subcutaneous implantable cardioverter-defibrillator


      • Image artifacts in standard LGE MRI are severe in patients implanted with an ICD
      • Image artifacts induced by an S-ICD is expected to be larger than the artifacts induced by a TV-ICD.
      • Wideband LGE MRI provides unobstructed viewing of scar in patients with an S-ICD


      A subcutaneous implantable cardioverter-defibrillator (S-ICD) is an alternative device for prevention of sudden cardiac death, without any leads within the heart. Patients implanted with any type of ICD may need catheter ablation of ventricular tachycardia (VT) to reduce the overall arrhythmia burden (e.g., recurrent monomorphic VT) and lower the incidence of painful shocks induced by the device. Late gadolinium enhancement (LGE) MRI is a useful pre-test for guiding VT ablation, because it can be used to map myocardial scar and produce better outcomes. Growing evidence suggests that MRI can be performed with manageable risks on patients with a cardiac implantable electronic device (CIED). Nonetheless, the diagnostic yield of cardiac MRI is still low because of severe image artifacts, regardless of MR-conditional or non-MR conditional labeling. Image artifacts in the heart induced by an S-ICD is expected to be larger than the artifacts induced by a transvenous ICD, because the former is twice as large in size and implanted closer to the heart. This is the first reported case of successful wideband LGE MRI in a patient implanted with an MR-conditional S-ICD. A 37-year-old man with ischemic cardiomyopathy was referred for a cardiac MRI at 1.5 T ten months after S-ICD implantation, in order to rule out constrictive pericarditis. Clinical standard LGE MRI produced severe image artifacts, rendering it useless. In contrast, wideband LGE MRI provided unobstructed viewing of myocardial scarring. This case illustrates the usefulness of wideband LGE MRI for assessment of myocardial scarring in a patient with an MR-conditional S-ICD.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Kusumoto F.M.
        • Calkins H.
        • Boehmer J.
        • Buxton A.E.
        • Chung M.K.
        • Gold M.R.
        • et al.
        HRS/ACC/AHA expert consensus statement on the use of implantable cardioverter-defibrillator therapy in patients who are not included or not well represented in clinical trials.
        J Am Coll Cardiol. 2014; 64: 1143-1177
        • Atwater B.D.
        • Daubert J.P.
        Implantable cardioverter defibrillators: risks accompany the life-saving benefits.
        Heart. 2012; 98: 764-772
        • Yaminisharif A.
        • Soofizadeh N.
        • Shafiee A.
        • Kazemisaeid A.
        • Jalali A.
        • Generator Vasheghani-Farahani A.
        Lead-related complications of implantable cardioverter defibrillators.
        Int Cardio Res J. 2014; 8: 66-70
        • Gold M.R.
        • Theuns D.A.
        • Knight B.P.
        • Sturdivant J.L.
        • Sanghera R.
        • Ellenbogen K.A.
        • et al.
        Head-to-head comparison of arrhythmia discrimination performance of subcutaneous and transvenous ICD arrhythmia detection algorithms: the START study.
        J Cardiovasc Electrophysiol. 2012; 23: 359-366
        • Aliot E.M.
        • Stevenson W.G.
        • Almendral-Garrote J.M.
        • Bogun F.
        • Calkins C.H.
        • Delacretaz E.
        • et al.
        EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA).
        Heart Rhythm. 2009; 6: 886-933
        • Kim R.J.
        • Fieno D.S.
        • Parrish T.B.
        • Harris K.
        • Chen E.L.
        • Simonetti O.
        • et al.
        Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function.
        Circulation. 1999; 100: 1992-2002
        • Bello D.
        • Fieno D.S.
        • Kim R.J.
        • Pereles F.S.
        • Passman R.
        • Song G.
        • et al.
        Infarct morphology identifies patients with substrate for sustained ventricular tachycardia.
        J Am Coll Cardiol. 2005; 45: 1104-1108
        • Schmidt A.
        • Azevedo C.F.
        • Cheng A.
        • Gupta S.N.
        • Bluemke D.A.
        • Foo T.K.
        • et al.
        Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction.
        Circulation. 2007; 115: 2006-2014
        • Nazarian S.
        • Halperin H.R.
        How to perform magnetic resonance imaging on patients with implantable cardiac arrhythmia devices.
        Heart Rhythm. 2009; 6: 138-143
        • Nazarian S.
        • Hansford R.
        • Roguin A.
        • Goldsher D.
        • Zviman M.M.
        • Lardo A.C.
        • et al.
        A prospective evaluation of a protocol for magnetic resonance imaging of patients with implanted cardiac devices.
        Ann Intern Med. 2011; 155: 415-424
        • Nazarian S.
        • Roguin A.
        • Zviman M.M.
        • Lardo A.C.
        • Dickfeld T.L.
        • Calkins H.
        • et al.
        Clinical utility and safety of a protocol for noncardiac and cardiac magnetic resonance imaging of patients with permanent pacemakers and implantable-cardioverter defibrillators at 1.5 tesla.
        Circulation. 2006; 114: 1277-1284
        • Sommer T.
        • Naehle C.P.
        • Yang A.
        • Zeijlemaker V.
        • Hackenbroch M.
        • Schmiedel A.
        • et al.
        Strategy for safe performance of extrathoracic magnetic resonance imaging at 1.5 tesla in the presence of cardiac pacemakers in non-pacemaker-dependent patients: a prospective study with 115 examinations.
        Circulation. 2006; 114: 1285-1292
        • Russo R.J.
        • Costa H.S.
        • Silva P.D.
        • Anderson J.L.
        • Arshad A.
        • Biederman R.W.
        • et al.
        Assessing the risks associated with MRI in patients with a pacemaker or defibrillator.
        N Engl J Med. 2017; 376: 755-764
        • Dandamudi S.
        • Collins J.D.
        • Carr J.C.
        • Mongkolwat P.
        • Rahsepar A.A.
        • Tomson T.T.
        • et al.
        The safety of cardiac and thoracic magnetic resonance imaging in patients with cardiac implantable electronic devices.
        Acad Radiol. 2016; 23: 1498-1505
        • Rashid S.
        • Rapacchi S.
        • Vaseghi M.
        • Tung R.
        • Shivkumar K.
        • Finn J.P.
        • et al.
        Improved late gadolinium enhancement MR imaging for patients with implanted cardiac devices.
        Radiology. 2014; 270: 269-274
        • Ranjan R.
        • McGann C.J.
        • Jeong E.K.
        • Hong K.
        • Kholmovski E.G.
        • Blauer J.
        • et al.
        Wideband late gadolinium enhanced magnetic resonance imaging for imaging myocardial scar without image artefacts induced by implantable cardioverter-defibrillator: a feasibility study at 3 T.
        Europace. 2015; 17: 483-488
        • Kramer C.M.
        • Barkhausen J.
        • Flamm S.D.
        • Kim R.J.
        • Nagel E.
        Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update.
        J Cardiovasc Magn Reson. 2013; 15: 91
        • Stevens S.M.
        • Tung R.
        • Rashid S.
        • Gima J.
        • Cote S.
        • Pavez G.
        • et al.
        Device artifact reduction for magnetic resonance imaging of patients with implantable cardioverter-defibrillators and ventricular tachycardia: late gadolinium enhancement correlation with electroanatomic mapping.
        Heart Rhythm. 2014; 11: 289-298
        • Hong K.
        • Jeong E.K.
        • Wall T.S.
        • Drakos S.G.
        • Kim D.
        Wideband arrhythmia-insensitive-rapid (AIR) pulse sequence for cardiac T1 mapping without image artifacts induced by an implantable-cardioverter-defibrillator.
        Magn Reson Med. 2015; 74: 336-345
        • Shao J.
        • Rashid S.
        • Renella P.
        • Nguyen K.L.
        • Myocardial Hu P.
        T1 mapping for patients with implanted cardiac devices using wideband inversion recovery spoiled gradient echo readout.
        Magn Reson Med. 2017; 77: 1495-1504
        • Andreu D.
        • Penela D.
        • Acosta J.
        • Fernandez-Armenta J.
        • Perea R.J.
        • Soto-Iglesias D.
        • et al.
        Cardiac magnetic resonance-aided scar dechanneling: influence on acute and long-term outcomes.
        Heart Rhythm. 2017; 14: 1121-1128
        • Kandala J.
        • Upadhyay G.A.
        • Altman R.K.
        • Parks K.A.
        • Orencole M.
        • Mela T.
        • et al.
        QRS morphology, left ventricular lead location, and clinical outcome in patients receiving cardiac resynchronization therapy.
        Eur Heart J. 2013; 34: 2252-2262
        • Khan F.Z.
        • Virdee M.S.
        • Palmer C.R.
        • Pugh P.J.
        • O'Halloran D.
        • Elsik M.
        • et al.
        Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial.
        J Am Coll Cardiol. 2012; 59: 1509-1518
        • Khan F.Z.
        • Virdee M.S.
        • Fynn S.P.
        • Dutka D.P.
        Left ventricular lead placement in cardiac resynchronization therapy: where and how.
        Europace. 2009; 11: 554-561