Advertisement

Value of 18F-FET PET in adult brainstem glioma

Published:February 07, 2018DOI:https://doi.org/10.1016/j.clinimag.2018.01.015

      Highlights

      • Progressive gliomas have higher SUVmax (3.57 vs. 1.60; p = 0.003) and TBRmax (3.00 vs. 1.36; p = 0.001) than stable gliomas.
      • Patients with tumors TBRmax < 2.0 have longer progression-free survival compared to patients with tumor TBRmax > 2.0.
      • FET-PET might eventually be able to prognosticate progression of adult BSG. Tumors with a TBRmax > 2.0 might progress more rapidly.

      Abstract

      Purpose

      To investigate 18F-fluoro-ethyl-tyrosine positron emission tomography (FET-PET) imaging characteristics of adult brainstem glioma (BSG).

      Materials and methods

      FET-PET imaging and progression-free survival (PFS) of 16 adult patients with BSG was analyzed (9 high-grade gliomas, 7 low-grade gliomas). SUVmax, TBR, and time activity curves of FET-PET were calculated.

      Results

      Progressive gliomas had higher SUVmax (3.57 ± 1.47 vs. 1.60 ± 0.51; p = 0.003) and TBRmax (3.00 ± 1.12 vs. 1.36 ± 0.33; p = 0.001) than stable gliomas. Kaplan-Meier analysis showed longer PFS of tumors with TBRmax < 2.0 compared to tumors with TBRmax > 2.0 (665 ± 32 days versus 220 ± 39 days; p < 0.001).

      Conclusion

      FET-PET uptake might be associated with disease progression in adult BSG.

      Abbreviations:

      ADC (apparent diffusion coefficient), BSG (brain stem glioma), Cho (choline), CT (computed tomography), DTI (diffusion tensor imaging), DWI (diffusion weighted imaging), FET (18F-fluoro-ethyl-tyrosine), FLAIR (fluid-attenuated inversion recovery), GBM (glioblastoma multiforme), IDH (isocitrate dehydrogenase), KFS (Karnofsky performance status), LOH (loss of heterozygosity), MCP (middle cerebellar peduncle), MGMT (O(6)-methlyguanine-DNA-methyltransferase), MR (magnetic resonance), MRS (magnetic resonance spectroscopy), NAA (N-acetylaspartate), PET (positron emission tomography), PFS (progression-free survival), PWI (perfusion-weighted imaging), RT (radiation therapy), SUVmax (maximum standardized uptake value), T1w (T1-weighted), T2w (T2-weighted), TAC (time activity curve), TBR (tumor-to-brain ratio), TMZ (temozolomide), VOI (volume of interest), WM (white matter)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barkovich A.J.
        • Krischer J.
        • Kun L.E.
        • Packer R.
        • Zimmerman R.A.
        • Freeman C.R.
        • et al.
        Brain stem gliomas: a classification system based on magnetic resonance imaging.
        Pediatr Neurosurg. 1990; 16: 73-83
        • Dodo T.
        • Okada T.
        • Yamamoto A.
        • Kanagaki M.
        • Fushimi Y.
        • Okada T.
        • et al.
        T1-weighted MR imaging of glioma at 3 T: a comparative study of 3D MPRAGE vs. conventional 2D spin-echo imaging.
        Clin Imaging. 2016; 40: 1257-1261
        • Grimm S.A.
        • Chamberlain M.C.
        Brainstem glioma: a review.
        Curr Neurol Neurosci Rep. 2013; 13: 346
        • Landolfi J.C.
        • Thaler H.T.
        • DeAngelis L.M.
        Adult brainstem gliomas.
        Neurology. 1998; 51: 1136-1139
        • Lachi P.K.
        • Irrakula M.
        • Ahmed S.F.
        • Joseph D.
        • Pamidighantam S.
        • Jagannath Rao Naidu K.V.
        Clinical profile and outcomes in brainstem glioma: an institutional experience.
        Asian J Neurosurg. 2015; 10: 298-302
        • Guillamo J.S.
        • Monjour A.
        • Taillandier L.
        • Devaux B.
        • Varlet P.
        • Haie-Meder C.
        • et al.
        Brainstem gliomas in adults: prognostic factors and classification.
        Brain. 2001; 124: 2528-2539
        • Cha S.
        Neuroimaging in neuro-oncology.
        Neurotherapeutics. 2009; 6: 465-477
        • Purohit B.
        • Kamli A.A.
        • Kollias S.S.
        Imaging of adult brainstem gliomas.
        Eur J Radiol. 2015; 84: 709-720
        • Reyes-Botero G.
        • Mokhtari K.
        • Martin-Duverneuil N.
        • Delattre J.Y.
        • Laigle-Donadey F.
        Adult brainstem gliomas.
        Oncologist. 2012; 17: 388-397
        • Rosenfeld A.
        • Etzl M.
        • Bandy D.
        • Carpenteri D.
        • Gieseking A.
        • Dvorchik I.
        • et al.
        Use of positron emission tomography in the evaluation of diffuse intrinsic brainstem gliomas in children.
        J Pediatr Hematol Oncol. 2011; 33: 369-373
        • Tisnado J.
        • Young R.
        • Peck K.K.
        • Haque S.
        Conventional and advanced imaging of diffuse intrinsic pontine glioma.
        J Child Neurol. 2016; 31: 1386-1393
        • Zukotynski K.A.
        • Fahey F.H.
        • Kocak M.
        • Alavi A.
        • Wong T.Z.
        • Treves S.T.
        • et al.
        Evaluation of 18F-FDG PET and MRI associations in pediatric diffuse intrinsic brain stem glioma: a report from the Pediatric Brain Tumor Consortium.
        J Nucl Med. 2011; 52: 188-195
        • Rachinger W.
        • Goetz C.
        • Popperl G.
        • Gildehaus F.J.
        • Kreth F.W.
        • Holtmannspotter M.
        • et al.
        Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas.
        Neurosurgery. 2005; 57 (discussion-11): 505-511
        • Weckesser M.
        • Langen K.J.
        • Rickert C.H.
        • Kloska S.
        • Straeter R.
        • Hamacher K.
        • et al.
        O-(2-[18F]fluorethyl)-l-tyrosine PET in the clinical evaluation of primary brain tumours.
        Eur J Nucl Med Mol Imaging. 2005; 32: 422-429
        • Meric K.
        • Killeen R.P.
        • Abi-Ghanem A.S.
        • Soliman F.
        • Novruzov F.
        • Cakan E.
        • et al.
        The use of 18F-FDG PET ratios in the differential diagnosis of common malignant brain tumors.
        Clin Imaging. 2015; 39: 970-974
        • Tawakol A.
        • Migrino R.Q.
        • Bashian G.G.
        • Bedri S.
        • Vermylen D.
        • Cury R.C.
        • et al.
        In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients.
        J Am Coll Cardiol. 2006; 48: 1818-1824
        • Rapp M.
        • Heinzel A.
        • Galldiks N.
        • Stoffels G.
        • Felsberg J.
        • Ewelt C.
        • et al.
        Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma.
        J Nucl Med. 2013; 54: 229-235
        • Pauleit D.
        • Floeth F.
        • Hamacher K.
        • Riemenschneider M.J.
        • Reifenberger G.
        • Muller H.W.
        • et al.
        O-(2-[18F]fluoroethyl)-l-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas.
        Brain. 2005; 128: 678-687
        • Tscherpel C.
        • Dunkl V.
        • Ceccon G.
        • Stoffels G.
        • Judov N.
        • Rapp M.
        • et al.
        The use of O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of gliomas located in the brainstem and spinal cord.
        Neuro Oncol. 2017; 19: 710-718
        • Herholz K.
        Brain tumors: an update on clinical PET research in gliomas.
        Semin Nucl Med. 2017; 47: 5-17
        • Ellingson B.M.
        • Wen P.Y.
        • Cloughesy T.F.
        Modified criteria for radiographic response assessment in glioblastoma clinical trials.
        Neurotherapeutics. 2017; 14: 307-320
        • van den Bent M.J.
        • Wefel J.S.
        • Schiff D.
        • Taphoorn M.J.
        • Jaeckle K.
        • Junck L.
        • et al.
        Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas.
        Lancet Oncol. 2011; 12: 583-593
        • Galldiks N.
        • Stoffels G.
        • Filss C.
        • Rapp M.
        • Blau T.
        • Tscherpel C.
        • et al.
        The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma.
        Neuro Oncol. 2015; 17: 1293-1300
        • Dunet V.
        • Rossier C.
        • Buck A.
        • Stupp R.
        • Prior J.O.
        Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis.
        J Nucl Med. 2012; 53: 207-214
        • Burger C.
        • Buck A.
        Quantifying PET.
        in: von Schulthess G.K. Molecular anatomic imaging. Lippincott Williams & Wilkins, Philadelphia2007: 85-89
        • Laffon E.
        • Lamare F.
        • de Clermont H.
        • Burger I.A.
        • Marthan R.
        Variability of average SUV from several hottest voxels is lower than that of SUVmax and SUVpeak.
        Eur Radiol. 2014; 24: 1964-1970
        • Burger I.A.
        • Huser D.M.
        • Burger C.
        • von Schulthess G.K.
        • Buck A.
        Repeatability of FDG quantification in tumor imaging: averaged SUVs are superior to SUVmax.
        Nucl Med Biol. 2012; 39: 666-670
        • Langen K.J.
        • Bartenstein P.
        • Boecker H.
        • Brust P.
        • Coenen H.H.
        • Drzezga A.
        • et al.
        German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids.
        Nuklearmedizin. 2011; 50: 167-173
        • Sadeghi N.
        • Salmon I.
        • Decaestecker C.
        • Levivier M.
        • Metens T.
        • Wikler D.
        • et al.
        Stereotactic comparison among cerebral blood volume, methionine uptake, and histopathology in brain glioma.
        AJNR Am J Neuroradiol. 2007; 28: 455-461
        • Popperl G.
        • Gotz C.
        • Rachinger W.
        • Gildehaus F.J.
        • Tonn J.C.
        • Tatsch K.
        Value of O-(2-[18F]fluoroethyl)-l-tyrosine PET for the diagnosis of recurrent glioma.
        Eur J Nucl Med Mol Imaging. 2004; 31: 1464-1470
        • Calcagni M.L.
        • Galli G.
        • Giordano A.
        • Taralli S.
        • Anile C.
        • Niesen A.
        • et al.
        Dynamic O-(2-[18F]fluoroethyl)-l-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy.
        Clin Nucl Med. 2011; 36: 841-847
        • Popperl G.
        • Kreth F.W.
        • Herms J.
        • Koch W.
        • Mehrkens J.H.
        • Gildehaus F.J.
        • et al.
        Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods?.
        J Nucl Med. 2006; 47: 393-403
        • Louis D.N.
        • Ohgaki H.
        • Wiestler O.D.
        • Cavenee W.K.
        • Burger P.C.
        • Jouvet A.
        • et al.
        The 2007 WHO classification of tumours of the central nervous system.
        Acta Neuropathol. 2007; 114: 97-109
        • Jansen N.L.
        • Graute V.
        • Armbruster L.
        • Suchorska B.
        • Lutz J.
        • Eigenbrod S.
        • et al.
        MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET?.
        Eur J Nucl Med Mol Imaging. 2012; 39: 1021-1029
        • Dunet V.
        • Maeder P.
        • Nicod-Lalonde M.
        • Lhermitte B.
        • Pollo C.
        • Bloch J.
        • et al.
        Combination of MRI and dynamic FET PET for initial glioma grading.
        Nuklearmedizin. 2014; 53: 155-161
        • Rachinger W.
        • Grau S.
        • Holtmannspotter M.
        • Herms J.
        • Tonn J.C.
        • Kreth F.W.
        Serial stereotactic biopsy of brainstem lesions in adults improves diagnostic accuracy compared with MRI only.
        J Neurol Neurosurg Psychiatry. 2009; 80: 1134-1139
        • Dellaretti M.
        • Touzet G.
        • Reyns N.
        • Dubois F.
        • Gusmao S.
        • Pereira J.L.
        • et al.
        Correlation among magnetic resonance imaging findings, prognostic factors for survival, and histological diagnosis of intrinsic brainstem lesions in children.
        J Neurosurg Pediatr. 2011; 8: 539-543
        • Floeth F.W.
        • Pauleit D.
        • Sabel M.
        • Stoffels G.
        • Reifenberger G.
        • Riemenschneider M.J.
        • et al.
        Prognostic value of O-(2-18F-fluoroethyl)-l-tyrosine PET and MRI in low-grade glioma.
        J Nucl Med. 2007; 48: 519-527
        • Galldiks N.
        • Langen K.J.
        • Holy R.
        • Pinkawa M.
        • Stoffels G.
        • Nolte K.W.
        • et al.
        Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-l-tyrosine PET in comparison to MRI.
        J Nucl Med. 2012; 53: 1048-1057
        • Hargrave D.
        • Chuang N.
        • Bouffet E.
        Conventional MRI cannot predict survival in childhood diffuse intrinsic pontine glioma.
        J Neurooncol. 2008; 86: 313-319
        • Simon R.
        • Altman D.G.
        Statistical aspects of prognostic factor studies in oncology.
        Br J Cancer. 1994; 69: 979-985