Advertisement

Fat status detection and histotypes differentiation in solid renal masses using Dixon technique

      Highlights

      • Dixon technique systematically assessed renal masses: fat status and histotypes.
      • Only three histotypes of solid renal masses were confirmed to contain fat.
      • Signal intensity index and fat fraction had significant difference among histotypes.
      • Signal intensity index and fat fraction can differentiate different histotypes.

      Abstract

      Purpose

      To detect fat status and differentiate histotypes of renal masses by using Dixon technique.

      Materials and methods

      This study included 134 solid renal masses. Signal intensity index (SII) and fat fraction (FF) in different histotypes were compared.

      Results

      Only angiomyolipoma (AML), clear cell renal cell carcinoma (RCC), and papillary RCC were confirmed to contain fat. The FF of 16.8% can effectively differentiate AML from clear cell RCC, so did the SII of 9.2% can differentiate clear cell RCC from non-clear cell RCC and rare benign histotypes.

      Conclusion

      Dixon technique successfully evaluated the fat status and histotypes of renal masses.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pedrosa I.
        • Sun M.R.
        • Spencer M.
        • Genega E.M.
        • Olumi A.F.
        • Dewolf W.C.
        • et al.
        MR imaging of renal masses: correlation with findings at surgery and pathologic analysis.
        Radiographics. 2008; 28: 985-1003
        • Silverman S.G.
        • Mortele K.J.
        • Tuncali K.
        • Jinzaki M.
        • Cibas E.S.
        Hyperattenuating renal masses: etiologies, pathogenesis, and imaging evaluation.
        Radiographics. 2007; 27: 1131-1143
        • Sun D.
        • Wei C.
        • Li Y.
        • Lu Q.
        • Zhang W.
        • Hu B.
        Contrast-enhanced ultrasonography with quantitative analysis allows differentiation of renal tumor histotypes.
        Sci Rep. 2016; 635081
        • Prasad S.R.
        • Humphrey P.A.
        • Catena J.R.
        • Narra V.R.
        • Srigley J.R.
        • Cortez A.D.
        • et al.
        Common and uncommon histologic subtypes of renal cell carcinoma: imaging spectrum with pathologic correlation.
        Radiographics. 2006; 26 (discussion 1806-10): 1795-1806
        • Tirumani S.H.
        • Assiri Y.I.
        • Brimo F.
        • Tsatoumas M.
        • Reinhold C.
        Diffusion-weighted MR imaging of mucin-rich mucinous tubular and spindle cell carcinoma of the kidney: a case report.
        Clin Imaging. 2013; 37: 775-777
        • Karlo C.A.
        • Donati OF
        • Burger I.A.
        • Zheng J.
        • Moskowitz C.S.
        • Hricak H.
        • et al.
        MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters.
        Eur Radiol. 2013; 23: 1738-1744
        • Jhaveri K.S.
        • Elmi A.
        • Hosseini-Nik H.
        • Hedgire S.
        • Evans A.
        • Jewett M.
        • et al.
        Predictive value of chemical-shift MRI in distinguishing clear cell renal cell carcinoma from non-clear cell renal cell carcinoma and minimal-fat Angiomyolipoma.
        AJR Am J Roentgenol. 2015; 205: W79-W86
        • Moosavi B.
        • Shabana W.M.
        • El-Khodary M.
        • van der Pol C.B.
        • Flood T.A.
        • McInnes M.D.
        • et al.
        Intracellular lipid in clear cell renal cell carcinoma tumor thrombus and metastases detected by chemical shift (in and opposed phase) MRI: radiologic-pathologic correlation.
        Acta Radiol. 2016; 57: 241-248
        • Yoshimitsu K.
        • Kakihara D.
        • Irie H.
        • Tajima T.
        • Nishie A.
        • Asayama Y.
        • et al.
        Papillary renal carcinoma: diagnostic approach by chemical shift gradient-echo and echo-planar MR imaging.
        J Magn Reson Imaging. 2006; 23: 339-344
        • Schieda N.
        • van der Pol C.B.
        • Moosavi B.
        • McInnes M.D.
        • Mai K.T.
        • Flood T.A.
        Intracellular lipid in papillary renal cell carcinoma (pRCC): T2 weighted (T2W) MRI and pathologic correlation.
        Eur Radiol. 2015; 25: 2134-2142
        • Sun M.R.
        • Ngo L.
        • Genega E.M.
        • Atkins M.B.
        • Finn M.E.
        • Rofsky N.M.
        • et al.
        Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes--correlation with pathologic findings.
        Radiology. 2009; 250: 793-802
        • Razek A.A.
        • Farouk A.
        • Mousa A.
        • Nabil N.
        Role of diffusion-weighted magnetic resonance imaging in characterization of renal tumors.
        J Comput Assist Tomogr. 2011; 35: 332-336
        • Beddy P.
        • Rangarajan R.D.
        • Kataoka M.
        • Moyle P.
        • Graves M.J.
        • Sala E.
        T1-weighted fat-suppressed imaging of the pelvis with a dual-echo Dixon technique: initial clinical experience.
        Radiology. 2011; 258: 583-589
        • Ma J.
        Dixon techniques for water and fat imaging.
        J Magn Reson Imaging. 2008; 28: 543-558
        • Marin D.
        • Dale B.M.
        • Bashir M.R.
        • Ziemlewicz T.J.
        • Ringe K.I.
        • Boll D.T.
        • et al.
        Effectiveness of a three-dimensional dual gradient echo two-point Dixon technique for the characterization of adrenal lesions at 3 tesla.
        Eur Radiol. 2012; 22: 259-268
        • Rosenkrantz A.B.
        • Raj S.
        • Babb J.S.
        • Chandarana H.
        Comparison of 3D two-point Dixon and standard 2D dual-echo breath-hold sequences for detection and quantification of fat content in renal angiomyolipoma.
        Eur J Radiol. 2012; 81: 47-51
        • Kim H.
        • Taksali S.E.
        • Dufour S.
        • Befroy D.
        • Goodman T.R.
        • Petersen K.F.
        • et al.
        Comparative MR study of hepatic fat quantification using single-voxel proton spectroscopy, two-point dixon and three-point IDEAL.
        Magn Reson Med. 2008; 59: 521-527
        • Yoshimitsu K.
        • Honda H.
        • Kuroiwa T.
        • Irie H.
        • Tajima T.
        • Jimi M.
        • et al.
        MR detection of cytoplasmic fat in clear cell renal cell carcinoma utilizing chemical shift gradient-echo imaging.
        J Magn Reson Imaging. 1999; 9: 579-585
        • Kim J.K.
        • Kim S.H.
        • Jang Y.J.
        • Ahn H.
        • Kim C.S.
        • Park H.
        • et al.
        Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging.
        Radiology. 2006; 239: 174-180
        • Peng X.G.
        • Ju S.
        • Qin Y.
        • Fang F.
        • Cui X.
        • Liu G.
        • et al.
        Quantification of liver fat in mice: comparing dual-echo Dixon imaging, chemical shift imaging, and 1H-MR spectroscopy.
        J Lipid Res. 2011; 52: 1847-1855
        • Outwater E.K.
        • Bhatia M.
        • Siegelman E.S.
        • Burke M.A.
        • Mitchell D.G.
        Lipid in renal clear cell carcinoma: detection on opposed-phase gradient-echo MR images.
        Radiology. 1997; 205: 103-107
        • Yoshimitsu K.
        • Honda H.
        • Kuroiwa T.
        • Irie H.
        • Tajima T.
        • Jimi M.
        • et al.
        Fat detection in granular-cell renal cell carcinoma using chemical-shift gradient-echo MR imaging: another renal tumor that contains fat.
        Abdom Imaging. 2000; 25: 100-102