Advertisement

Clinical utility for diffusion MRI sequence in emergency and inpatient spine protocols

  • Michael J. Hoch
    Correspondence
    Corresponding author at: 1364 Clifton Rd NE, Atlanta, GA, 30322, United States.
    Affiliations
    Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY, 10016, United States
    Search for articles by this author
  • Joanne Rispoli
    Affiliations
    Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY, 10016, United States
    Search for articles by this author
  • Mary Bruno
    Affiliations
    Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY, 10016, United States

    Center for Advanced Imaging Innovation and Research (CAI2R), 660 First Avenue, NY, New York 10016, United States
    Search for articles by this author
  • Mervin Wauchope
    Affiliations
    Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY, 10016, United States
    Search for articles by this author
  • Yvonne W. Lui
    Affiliations
    Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY, 10016, United States
    Search for articles by this author
  • Timothy M. Shepherd
    Affiliations
    Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY, 10016, United States

    Center for Advanced Imaging Innovation and Research (CAI2R), 660 First Avenue, NY, New York 10016, United States
    Search for articles by this author

      Highlights

      • Diffusion MRI of the spine offers useful information to guide patient care.
      • rFOV overcomes challenges of spine diffusion, reducing artifacts & distortion.
      • Diffusion can increase confidence for subtle findings on conventional images.

      Abstract

      Diffusion imaging of the spine has the potential to change clinical management, but is challenging due to the small size of the cord and susceptibility artifacts from adjacent structures. Reduced field-of-view (rFOV) diffusion can improve image quality by decreasing the echo train length. Over the past 2 years, we have acquired a rFOV diffusion sequence for MRI spine protocols on most inpatients and emergency room patients. We provide selected imaging diagnoses to illustrate the utility of including diffusion spine MRI in clinical practice. Our experiences support using diffusion MRI to improve diagnostic certainty and facilitate prompt treatment or clinical management.

      Abbreviations:

      DWI (diffusion-weighted imaging), ADC (apparent diffusion coefficient), ETL (echo train length), MRI (magnetic resonance imaging), MS (multiple sclerosis), NMO (Neuromyelitis Optica), PEES (primary epidural Ewing sarcoma), rFOV (reduced field-of-view), STIR (Short Tau Inversion Recovery), TSE (turbo spin echo)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tanenbaum L.N.
        Clinical applications of diffusion imaging in the spine.
        Magn Reson Imaging Clin N Am. 2013; 21: 299-320
        • Hayes L.L.
        • Jones R.A.
        • Palasis S.
        • Aguilera D.
        • Porter D.A.
        Drop metastases to the pediatric spine revealed with diffusion-weighted MR imaging.
        Pediatr Radiol. 2012; 42: 1009-1013
        • Choudhri A.F.
        • Whitehead M.T.
        • Klimo P.
        • Montgomery B.K.
        • Boop F.A.
        Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children.
        Neuroradiology. 2014; 56: 169-174
        • Andre J.B.
        • Bammer R.
        Advanced diffusion-weighted magnetic resonance imaging techniques of the human spinal cord.
        Top Magn Reson Imaging. 2010; 21: 367-378
        • Wheeler-Kingshott C.A.M.
        • Ciccarelli O.
        Diffusion imaging of the optic nerve, spinal cord, and peripheral nerve.
        in: Jones D.K. Diffusion MRI. 1st ed. Oxford University Press, New York2010: 661-671
        • Figley C.R.
        • Stroman P.W.
        Investigation of human cervical and upper thoracic spinal cord motion: implications for imaging spinal cord structure and function.
        Magn Reson Med. 2007; 58: 185-189
        • Saritas E.U.
        • Cunningham C.H.
        • Lee J.H.
        • Han E.T.
        • Nishimura D.G.
        DWI of the spinal cord with reduced FOV single-shot EPI.
        Magn Reson Med. 2008; 60: 468-473
        • Zaharchuk G.
        • Saritas E.U.
        • Andre J.B.
        • et al.
        Reduced field-of-view diffusion imaging of the human spinal cord: comparison with conventional single-shot echo-planar imaging.
        AJNR Am J Neuroradiol. 2011; 32: 813-820
        • Wilm B.J.
        • Svensson J.
        • Henning A.
        • Pruessmann K.P.
        • Boesiger P.
        • Kollias S.S.
        Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging.
        Magn Reson Med. 2007; 57: 625-630
        • Holder C.A.
        • Muthupillai R.
        • Mukundan S.
        • Eastwood J.D.
        • Hudgins P.A.
        Diffusion-weighted MR imaging of the normal human spinal cord in vivo.
        Am J Neuroradiol. 2000; 21: 1799-1806
        • Samson R.S.
        • Lévy S.
        • Schneider T.
        • et al.
        ZOOM or non-ZOOM? Assessing spinal cord diffusion tensor imaging protocols for multi-centre studies.
        PLoS One. 2016; 11e0155557
        • Wargo C.J.
        • Moore J.
        • Gore J.C.
        A comparison and evaluation of reduced-FOV methods for multi-slice 7T human imaging.
        Magn Reson Imaging. 2013; 31: 1349-1359
        • Porter D.A.
        • Heidemann R.M.
        High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition.
        Magn Reson Med. 2009; 62: 468-475
        • Skare S.
        • Newbould R.D.
        • Clayton D.B.
        • Albers G.W.
        • Nagle S.
        • Bammer R.
        Clinical multishot DW-EPI through parallel imaging with considerations of susceptibility, motion, and noise.
        Magn Reson Med. 2007; 57: 881-890
        • Rieseberg S.
        • Frahm J.
        • Finsterbusch J.
        Two-dimensional spatially-selective RF excitation pulses in echo-planar imaging.
        Magn Reson Med. 2002; 47: 1186-1193
        • Masson C.
        • Pruvo J.P.
        • Meder J.F.
        • et al.
        Spinal cord infarction: clinical and magnetic resonance imaging findings and short term outcome.
        J Neurol Neurosurg Psychiatry. 2004; 75: 1431-1435
        • Kister I.
        • Johnson E.
        • Raz E.
        • Babb J.
        • Loh J.
        • Shepherd T.M.
        Specific MRI findings help distinguish acute transverse myelitis of Neuromyelitis Optica from spinal cord infarction.
        Mult Scler Relat Disord. 2016; 9: 62-67
        • Küker W.
        • Weller M.
        • Klose U.
        • Krapf H.
        • Dichgans J.
        • Nägele T.
        Diffusion-weighted MRI of spinal cord infarction—high resolution imaging and time course of diffusion abnormality.
        J Neurol. 2004; 251: 818-824
        • Moritani T.
        • Kim J.
        • Capizzano A.A.
        • Kirby P.
        • Kademian J.
        • Sato Y.
        Pyogenic and non-pyogenic spinal infections: emphasis on diffusion-weighted imaging for the detection of abscesses and pus collections.
        Br J Radiol. 2014; 87: 20140011
        • Darouiche R.O.
        Spinal epidural abscess.
        N Engl J Med. 2006; 355: 2012-2020
        • Gold M.
        Magnetic resonance imaging of spinal emergencies.
        Top Magn Reson Imaging. 2015; 24: 325-330
        • Eastwood J.D.
        • Vollmer R.T.
        • Provenzale J.M.
        Diffusion-weighted imaging in a patient with vertebral and epidural abscesses.
        AJNR Am J Neuroradiol. 2002; 23: 496-498
        • Luypaert R.
        • Boujraf S.
        • Sourbron S.
        • Osteaux M.
        Diffusion and perfusion MRI: basic physics.
        Eur J Radiol. 2001; 38: 19-27
        • Tuchman A.
        • Pham M.
        • Hsieh P.C.
        The indications and timing for operative management of spinal epidural abscess: literature review and treatment algorithm.
        Neurosurg Focus. 2014; 37E8
        • Dunbar J.A.T.
        • Sandoe J.A.T.
        • Rao A.S.
        • Crimmins D.W.
        • Baig W.
        • Rankine J.J.
        The MRI appearances of early vertebral osteomyelitis and discitis.
        Clin Radiol. 2010; 65: 974-981
        • Eguchi Y.
        • Ohtori S.
        • Yamashita M.
        • et al.
        Diffusion magnetic resonance imaging to differentiate degenerative from infectious endplate abnormalities in the lumbar spine.
        Spine. 2011; 36: E198-E202
        • Patel K.B.
        • Poplawski M.M.
        • Pawha P.S.
        • Naidich T.P.
        • Tanenbaum L.N.
        Diffusion-weighted MRI “claw sign” improves differentiation of infectious from degenerative modic type 1 signal changes of the spine.
        AJNR Am J Neuroradiol. 2014; 35: 1647-1652
        • Fanning N.F.
        • Laffan E.E.
        • Shroff M.M.
        Serial diffusion-weighted MRI correlates with clinical course and treatment response in children with intracranial pus collections.
        Pediatr Radiol. 2006; 36: 26-37
        • Madhok R.
        • Sachdeva P.
        Evaluation of apparent diffusion coefficient values in spinal tuberculosis by MRI.
        J Clin Diagn Res. 2016; 10: TC19-TC23
        • Kim J.
        • Moritani T.
        MRI diagnosis of spinal cord lesions with emphasis on diffusion-weighted imaging: characteristic findings, differential diagnoses and imaging pitfalls.
        (Presented at: European Society of Radiology 2012 Annual Meeting, March 1–5, 2012, Vienna, Austria)
        http://dx.doi.org/10.1594/ecr2012/C-1924.28
        Date: 2012
        • Bammer R.
        Basic principles of diffusion-weighted imaging.
        Eur J Radiol. 2003; 45: 169-184
        • Wingerchuk D.M.
        • Banwell B.
        • Bennett J.L.
        • et al.
        International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.
        Lippincott Williams & Wilkins, 2015: 177-189
        • Baruah D.
        • Chandra T.
        • Bajaj M.
        • et al.
        A simplified algorithm for diagnosis of spinal cord lesions.
        Curr Probl Diagn Radiol. 2015; 44: 256-266
        • Tanenbaum L.N.
        Diffusion imaging of the spine.
        Appl Radiol. March 28, 2011;
        • Parag Y.
        • Delman B.
        • Pawha P.
        • Tanenbaum L.N.
        Diffusion weighted imaging facilitates detection of spinal metastases and assists in the diagnosis of equivocal lesions.
        (Paper presented at: American Society of Neuroradiology Annual Meeting 2010; May 15–20, 2010; Boston, MA)2010
        • Jung H.-S.
        • Jee W.-H.
        • McCauley T.R.
        • Ha K.-Y.
        • Choi K.-H.
        Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging.
        Radiographics. 2003; 23: 179-187
        • Byun W.M.
        • Shin S.O.
        • Chang Y.
        • Lee S.J.
        • Finsterbusch J.
        • Frahm J.
        Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy.
        Am J Neuroradiol. 2002; 23: 906-912
        • Fawzy F.
        • Tantawy H.I.
        • Ragheb A.
        • Hashem S.A.
        Diagnostic value of apparent diffusion coefficient to differentiate benign from malignant vertebral bone marrow lesions.
        Egypt. J. Radiol. Nucl. Med. 2013; 44: 265-271
        • Kolstad F.
        • Rygh O.M.
        • Selbekk T.
        • Unsgaard G.
        • Nygaard O.P.
        Three-dimensional ultrasonography navigation in spinal cord tumor surgery. Technical note.
        J Neurosurg Spine. 2006; 5: 264-270
        • Ducreux D.
        • Lepeintre J.-F.
        • Fillard P.
        • Loureiro C.
        • Tadié M.
        • Lasjaunias P.
        MR diffusion tensor imaging and fiber tracking in 5 spinal cord astrocytomas.
        Am J Neuroradiol. 2006; 27: 214-216
        • Setzer M.
        • Murtagh R.D.
        • Murtagh F.R.
        • et al.
        Diffusion tensor imaging tractography in patients with intramedullary tumors: comparison with intraoperative findings and value for prediction of tumor resectability.
        J Neurosurg Spine. 2010; 13: 371-380
        • Mirvis S.E.
        MRI and acute traumatic epidural lesions.
        in: Uhlenbrock D. MR imaging of the spine and spinal cord. 1st ed. 452. Thieme Verlag, Stuttgart, Germany2004
        • Liao C.C.
        • Less S.T.
        • Hsu W.C.
        • Chen L.R.
        • Lui T.N.
        • Lee S.C.
        Experience in the surgical management of spontaneous spinal epidural hematoma.
        J Neurosurg. 2004; 100: 38-45
        • Endo T.
        • Suzuki S.
        • Inoue T.
        • Utsunomiya A.
        • Uenohara H.
        • Tominaga T.
        Prediction of neurological recovery in spontaneous spinal epidural hematoma using apparent diffusion coefficient values.
        Spinal Cord. 2014; 52: 729-733
        • Norenberg M.D.
        • Smith J.
        • Marcillo A.
        The pathology of human spinal cord injury: defining the problems.
        J Neurotrauma. 2004; 21: 429-440
        • Shanmuganathan K.
        • Gullapalli R.P.
        • Zhuo J.
        • Mirvis S.E.
        Diffusion tensor MR imaging in cervical spine trauma.
        AJNR Am J Neuroradiol. 2008; 29: 655-659
        • Kamble R.B.
        • Venkataramana N.K.
        • Naik A.L.
        • Rao S.V.
        Diffusion tensor imaging in spinal cord injury.
        Indian J Radiol Imaging. 2011; 21: 221-224
        • Mulcahey M.J.
        • Samdani A.F.
        • Gaughan J.P.
        • et al.
        Diagnostic accuracy of diffusion tensor imaging for pediatric cervical spinal cord injury.
        Spinal Cord. 2013; 51: 532-537
        • Shepherd T.M.
        • Hoch M.J.
        • Cohen B.A.
        • et al.
        Palliative CT-guided cordotomy for medically intractable pain in patients with cancer.
        AJNR Am J Neuroradiol. 2017; 38: 387-390
        • Hodge M.H.
        • Williams R.L.
        • Fukui M.B.
        Neurosarcoidosis presenting as acute infarction on diffusion-weighted MR imaging: summary of radiologic findings.
        AJNR Am J Neuroradiol. 2007; 28: 84-86
        • Shanbhogue K.P.
        • Hoch M.J.
        • Fatterpekar G.M.
        • Chandarana H.
        Von hippel-lindau disease: review of genetics and imaging.
        Radiol Clin North Am. 2016; 54: 409-422