Advertisement

Upper extremity non-contrast magnetic resonance venography (MRV) compared to contrast enhanced MRV and ultrasound

      Highlights

      • Non-contrast MRV has potential for pre-dialysis work-up of renal failure patients.
      • Non-contrast versus contrast-enhanced chest/arm MRV is evaluated in volunteers.
      • Both MRV techniques are compared to ultrasound-derived measurements in the arm.
      • Non-contrast and contrast enhanced MRV caliber measurements are comparable.
      • Both MRV techniques derive slightly larger measurements than ultrasound.

      Abstract

      Purpose

      To assess feasibility, image quality and measured venous caliber of non-contrast MRV (NC-MRV) of central and upper extremity veins, compared to contrast-enhanced MRV (CE-MRV) and ultrasound (US) in healthy volunteers.

      Materials and methods

      10 subjects underwent NC-MRV and CE-MRV at 1.5 T, with comparison to US. Two radiologists evaluated MRI for image quality (IQ) and venous caliber.

      Results and conclusions

      NC-MRV is feasible, with inferior IQ but comparable venous caliber measurements CE-MRV (mean 7.9 ± 4.58 mm vs. 7.83 ± 4.62, p = 0.13). Slightly larger upper limb caliber measurements were derived for NC-MRV and CE-MRV compared to US (NC-MRV 5.2 ± 1.8 mm, CE-MRV 4.9 ± 1.6 mm, US 4.5 ± 1.8 mm, both p < 0.001).

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jha V.
        • Garcia-Garcia G.
        • Iseki K.
        • Li Z.
        • Naicker S.
        • Plattner B.
        • et al.
        Chronic kidney disease: global dimension and perspectives.
        Lancet. 2013; 382: 260-272
        • Lozano R.
        • Naghavi M.
        • Foreman K.
        • Lim S.
        • Shibuya K.
        • Aboyans V.
        • et al.
        Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.
        Lancet. 2012; 380: 2095-2128
        • Liyanage T.
        • Ninomiya T.
        • Jha V.
        • Neal B.
        • Patrice H.M.
        • Okpechi I.
        • et al.
        Worldwide access to treatment for end-stage kidney disease: a systematic review.
        Lancet. 2015; 385: 1975-1982
        • National Kidney Foundation-Dialysis Outcomes Quality Initiative
        NKF-DOQI clinical practice guidelines for vascular access.
        Am J Kidney Dis. 1997; 30: S150-S191
        • Huber T.S.
        • Ozaki C.K.
        • Flynn T.C.
        • Lee W.A.
        • Berceli S.A.
        • Hirneise C.M.
        • et al.
        Prospective validation of an algorithm to maximize native arteriovenous fistulae for chronic hemodialysis access.
        J Vasc Surg. 2002; 36: 452-459
        • Karakayali F.
        • Ekici Y.
        • Gorur S.K.
        • Arat Z.
        • Boyvat F.
        • Karakayali H.
        • et al.
        The value of preoperative vascular imaging in the selection and success of hemodialysis access.
        Ann Vasc Surg. 2007; 21: 481-489
        • Mihmanli I.
        • Kantarci F.
        MR venography needs to know where it stands for vascular mapping prior to fistula creation.
        Eur Radiol. 2004; 14 ([author reply 2–3]): 1130-1131
        • Robbin M.L.
        • Gallichio M.H.
        • Deierhoi M.H.
        • Young C.J.
        • Weber T.M.
        • Allon M.
        US vascular mapping before hemodialysis access placement.
        Radiology. 2000; 217: 83-88
        • Silva Jr., M.B.
        • Hobson 2nd, R.W.
        • Pappas P.J.
        • Jamil Z.
        • Araki C.T.
        • Goldberg M.C.
        • et al.
        A strategy for increasing use of autogenous hemodialysis access procedures: impact of preoperative noninvasive evaluation.
        J Vasc Surg. 1998; 27 ([discussion 7–8]): 302-307
        • Lomonte C.
        • Meola M.
        • Petrucci I.
        • Casucci F.
        • Basile C.
        The key role of color Doppler ultrasound in the work-up of hemodialysis vascular access.
        Semin Dial. 2015; 28: 211-215
        • Collins R.
        • Cranny G.
        • Burch J.
        • Aguiar-Ibanez R.
        • Craig D.
        • Wright K.
        • et al.
        A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease.
        Health Technol Assess. 2007; 11 ([iii–iv, xi–xiii]): 1-184
        • Laissy J.P.
        • Fernandez P.
        • Karila-Cohen P.
        • Delmas V.
        • Dupuy E.
        • Chillon S.
        • et al.
        Upper limb vein anatomy before hemodialysis fistula creation: cross-sectional anatomy using MR venography.
        Eur Radiol. 2003; 13: 256-261
        • Grobner T.
        • Prischl F.C.
        Gadolinium and nephrogenic systemic fibrosis.
        Kidney Int. 2007; 72: 260-264
        • Kanda T.
        • Fukusato T.
        • Matsuda M.
        • Toyoda K.
        • Oba H.
        • Kotoku J.
        • et al.
        Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy.
        Radiology. 2015; 276: 228-232
        • Kanda T.
        • Ishii K.
        • Kawaguchi H.
        • Kitajima K.
        • Takenaka D.
        High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material.
        Radiology. 2014; 270: 834-841
        • Lim R.P.
        • Koktzoglou I.
        Noncontrast magnetic resonance angiography: concepts and clinical applications.
        Radiol Clin N Am. 2015; 53: 457-476
        • Hodnett P.A.
        • Koktzoglou I.
        • Davarpanah A.H.
        • Scanlon T.G.
        • Collins J.D.
        • Sheehan J.J.
        • et al.
        Evaluation of peripheral arterial disease with nonenhanced quiescent-interval single-shot MR angiography.
        Radiology. 2011; 260: 282-293
        • Kato S.
        • Kitagawa K.
        • Ishida N.
        • Ishida M.
        • Nagata M.
        • Ichikawa Y.
        • et al.
        Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial.
        J Am Coll Cardiol. 2010; 56: 983-991
        • Lim R.P.
        • Fan Z.
        • Chatterji M.
        • Baadh A.
        • Atanasova I.P.
        • Storey P.
        • et al.
        Comparison of nonenhanced MR angiographic subtraction techniques for infragenual arteries at 1.5 T: a preliminary study.
        Radiology. 2013; 267: 293-304
        • Parienty I.
        • Rostoker G.
        • Jouniaux F.
        • Piotin M.
        • Admiraal-Behloul F.
        • Miyazaki M.
        Renal artery stenosis evaluation in chronic kidney disease patients: nonenhanced time-spatial labeling inversion-pulse three-dimensional MR angiography with regulated breathing versus DSA.
        Radiology. 2011; 259: 592-601
        • Miyazaki M.
        • Sugiura S.
        • Tateishi F.
        • Wada H.
        • Kassai Y.
        • Abe H.
        Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo.
        J Magn Reson Imaging. 2000; 12: 776-783
        • Harigai M.
        • Okada T.
        • Umeoka S.
        • Nagayama S.
        • Tanaka E.
        • Fujimoto K.
        • et al.
        Non-contrast-enhanced MR venography of the upper limb: a comparative study of acquisitions with fresh blood imaging vs. time-of-flight methods.
        Clin Imaging. 2012; 36: 496-501
        • Wedeen V.J.
        • Meuli R.A.
        • Edelman R.R.
        • Geller S.C.
        • Frank L.R.
        • Brady T.J.
        • et al.
        Projective imaging of pulsatile flow with magnetic resonance.
        Science. 1985; 230: 946-948
        • Rohrer M.
        • Bauer H.
        • Mintorovitch J.
        • Requardt M.
        • Weinmann H.J.
        Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths.
        Investig Radiol. 2005; 40: 715-724
        • Zhang H.
        • Maki J.H.
        • Prince M.R.
        3D contrast-enhanced MR angiography.
        J Magn Reson Imaging. 2007; 25: 13-25
        • Brown P.W.
        Preoperative radiological assessment for vascular access.
        Eur J Vasc Endovasc Surg. 2006; 31: 64-69
        • Bode A.S.
        • Planken R.N.
        • Merkx M.A.
        • van der Sande F.M.
        • Geerts L.
        • Tordoir J.H.
        • et al.
        Feasibility of non-contrast-enhanced magnetic resonance angiography for imaging upper extremity vasculature prior to vascular access creation.
        Eur J Vasc Endovasc Surg. 2012; 43: 88-94
        • Kim C.Y.
        • Bashir M.R.
        • Heye T.
        • Dale B.M.
        • Nichols H.L.
        • Merkle E.M.
        Respiratory-gated noncontrast SPACE MR angiography sequence at 3T for evaluation of the central veins of the chest: a feasibility study.
        J Magn Reson Imaging. 2015; 41: 67-73
        • Constable R.T.
        • Gore J.C.
        The loss of small objects in variable TE imaging: implications for FSE, RARE, and EPI.
        Magn Reson Med. 1992; 28: 9-24
        • Anzai Y.
        • Lufkin R.B.
        • Jabour B.A.
        • Hanafee W.N.
        Fat-suppression failure artifacts simulating pathology on frequency-selective fat-suppression MR images of the head and neck.
        AJNR Am J Neuroradiol. 1992; 13: 879-884
        • Frahm J.
        • Haase A.
        • Hanicke W.
        • Matthaei D.
        • Bomsdorf H.
        • Helzel T.
        Chemical shift selective MR imaging using a whole-body magnet.
        Radiology. 1985; 156: 441-444
        • Bydder G.M.
        • Young I.R.
        MR imaging: clinical use of the inversion recovery sequence.
        J Comput Assist Tomogr. 1985; 9: 659-675
        • Merkx M.A.
        • Bosboom E.M.
        • Bode A.S.
        • Bescos J.O.
        • Breeuwer M.
        • Tordoir J.H.
        • et al.
        Non contrast-enhanced MRA versus ultrasound blood vessel assessment to determine the choice of hemodialysis vascular access.
        J Vasc Access. 2013; 14: 348-355
        • Hoogeveen R.M.
        • Bakker C.J.
        • Viergever M.A.
        Limits to the accuracy of vessel diameter measurement in MR angiography.
        J Magn Reson Imaging. 1998; 8: 1228-1235
        • Fraser D.G.
        • Moody A.R.
        • Davidson I.R.
        • Martel A.L.
        • Morgan P.S.
        Deep venous thrombosis: diagnosis by using venous enhanced subtracted peak arterial MR venography versus conventional venography.
        Radiology. 2003; 226: 812-820
        • Xu J.
        • Oesingmann N.
        • Stemmer A.
        • McGorty K.
        • Hecht E.M.
        • Lim R.P.
        • et al.
        Reduced acquisition window with parallel technique improves non contrast 3D HASTE MRA imaging.
        in: Proc 14th meeting ISMRM, Seattle, 2006. 2006: 1931
        • Dixon W.T.
        Simple proton spectroscopic imaging.
        Radiology. 1984; 153: 189-194
        • Eggers H.
        • Bornert P.
        Chemical shift encoding-based water-fat separation methods.
        J Magn Reson Imaging. 2014; 40: 251-268
        • Bashir M.R.
        • Mody R.
        • Neville A.
        • Javan R.
        • Seaman D.
        • Kim C.Y.
        • et al.
        Retrospective assessment of the utility of an iron-based agent for contrast-enhanced magnetic resonance venography in patients with endstage renal diseases.
        J Magn Reson Imaging. 2014; 40: 113-118