Advertisement

Tips and tricks to optimize MRI protocols for cutaneous vascular anomalies

  • Mark D. Mamlouk
    Correspondence
    Corresponding author at: Department of Radiology, The Permanente Medical Group, Kaiser Permanente Medical Center, Santa Clara, 700 Lawrence Expy, Santa Clara, CA 95051, United States.
    Affiliations
    Department of Radiology, The Permanente Medical Group, Kaiser Permanente Medical Center, Santa Clara, 700 Lawrence Expy, Santa Clara, CA 95051, United States

    Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, L371, San Francisco, CA 94143, United States
    Search for articles by this author
  • Andrew D. Nicholson
    Affiliations
    Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, L351, San Francisco, CA 94143, United States
    Search for articles by this author
  • Daniel L. Cooke
    Affiliations
    Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, L351, San Francisco, CA 94143, United States
    Search for articles by this author
  • Christopher P. Hess
    Affiliations
    Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, L371, San Francisco, CA 94143, United States

    Department of Neurology, University of California, San Francisco, 505 Parnassus Ave, L371, San Francisco, CA 94143, United States
    Search for articles by this author

      Highlights

      • Looking at the skin lesion prior to scanning will help determine the choice of MRI coil and the extent of scanning.
      • Starting with T2WI can depict key features in vascular anomalies and help guide the remainder of the examination protocol.
      • Fat-suppressed precontrast T1WI provides a comparison to fat-suppressed postcontrast T1WI when characterizing enhancement.
      • Dynamic MRA/MRV shows arteriovenous shunting and sometimes shows the lesion better than conventional MR imaging.
      • Arterial spin-labeled imaging, fetal MRI, and MRI-guided sclerotherapy are advanced techniques for vascular anomalies.

      Abstract

      Magnetic resonance imaging (MRI) serves as the principal imaging modality to diagnose and plan treatment for children with cutaneous vascular anomalies. While routine MRI protocols can lead to the correct diagnosis in the majority of cases, the imaging appearances can sometimes be nonspecific or confusing, yielding more than one possible diagnosis. This review highlights specific MRI sequence recommendations and scanning tips that can optimize the imaging protocol to increase diagnostic confidence.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flors L.
        • Leiva-Salinas C.
        • Maged I.M.
        • Norton P.T.
        • Matsumoto A.H.
        • Angle J.F.
        • et al.
        MR imaging of soft-tissue vascular malformations: diagnosis, classification, and therapy follow-up.
        Radiographics. 2011; 31 ([discussion 40-1]): 1321-1340
        • Mamlouk M.D.
        • Anavim A.
        • Goodwin S.C.
        Radiology residents rounding with the clinical teams: a pilot study to improve the radiologist's visibility as a consultant.
        J Am Coll Radiol. 2014; 11: 326-328
        • White C.L.
        • Olivieri B.
        • Restrepo R.
        • McKeon B.
        • Karakas S.P.
        • Lee E.Y.
        Low-flow vascular malformation pitfalls: from clinical examination to practical imaging evaluation—part 1, lymphatic malformation mimickers.
        AJR Am J Roentgenol. 2016; 206: 940-951
        • Del Grande F.
        • Santini F.
        • Herzka D.A.
        • Aro M.R.
        • Dean C.W.
        • Gold G.E.
        • et al.
        Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system.
        Radiographics. 2014; 34: 217-233
        • Olivieri B.
        • White C.L.
        • Restrepo R.
        • McKeon B.
        • Karakas S.P.
        • Lee E.Y.
        Low-flow vascular malformation pitfalls: from clinical examination to practical imaging evaluation—part 2, venous malformation mimickers.
        AJR Am J Roentgenol. 2016; 206: 952-962
        • Higgins L.J.
        • Koshy J.
        • Mitchell S.E.
        • Weiss C.R.
        • Carson K.A.
        • Huisman T.A.
        • et al.
        Time-resolved contrast-enhanced MRA (TWIST) with gadofosveset trisodium in the classification of soft-tissue vascular anomalies in the head and neck in children following updated 2014 ISSVA classification: first report on systematic evaluation of MRI and TWIST in a cohort of 47 children.
        Clin Radiol. 2016; 71: 32-39
        • Abdel Razek A.A.
        • Albair G.A.
        • Samir S.
        Clinical value of classification of venous malformations with contrast-enhanced MR angiography.
        Phlebology. 2016;
        • Razek A.A.
        • Gaballa G.
        • Megahed A.S.
        • Elmogy E.
        Time resolved imaging of contrast kinetics (TRICKS) MR angiography of arteriovenous malformations of head and neck.
        Eur J Radiol. 2013; 82: 1885-1891
        • Patel A.S.
        • Schulman J.M.
        • Ruben B.S.
        • Hoffman W.Y.
        • Dowd C.F.
        • Frieden I.J.
        • et al.
        Atypical MRI features in soft-tissue arteriovenous malformation: a novel imaging appearance with radiologic-pathologic correlation.
        Pediatr Radiol. 2015; 45: 1515-1521
        • Chavhan G.B.
        • Babyn P.S.
        Whole-body MR imaging in children: principles, technique, current applications, and future directions.
        Radiographics. 2011; 31: 1757-1772
        • Mamlouk M.D.
        • Hess C.P.
        Arterial spin-labeled perfusion for vascular anomalies in the pediatric head and neck.
        Clin Imaging. 2016; 40: 1040-1046
        • Boulouis G.
        • Dangouloff-Ros V.
        • Boccara O.
        • Garabedian N.
        • Soupre V.
        • Picard A.
        • et al.
        Arterial spin-labeling to discriminate pediatric cervicofacial soft-tissue vascular anomalies.
        AJNR Am J Neuroradiol. 2017;
        • Garzon M.C.
        • Epstein L.G.
        • Heyer G.L.
        • Frommelt P.C.
        • Orbach D.B.
        • Baylis A.L.
        • et al.
        PHACE syndrome: consensus-derived diagnosis and care recommendations.
        J Pediatr. 2016; 178: 24-33.e2
        • Hess C.P.
        • Fullerton H.J.
        • Metry D.W.
        • Drolet B.A.
        • Siegel D.H.
        • Auguste K.I.
        • et al.
        Cervical and intracranial arterial anomalies in 70 patients with PHACE syndrome.
        AJNR Am J Neuroradiol. 2010; 31: 1980-1986
        • Siegel D.H.
        • Tefft K.A.
        • Kelly T.
        • Johnson C.
        • Metry D.
        • Burrows P.
        • et al.
        Stroke in children with posterior fossa brain malformations, hemangiomas, arterial anomalies, coarctation of the aorta and cardiac defects, and eye abnormalities (PHACE) syndrome: a systematic review of the literature.
        Stroke. 2012; 43: 1672-1674
        • Metry D.
        • Frieden I.J.
        • Hess C.
        • Siegel D.
        • Maheshwari M.
        • Baselga E.
        • et al.
        Propranolol use in PHACE syndrome with cervical and intracranial arterial anomalies: collective experience in 32 infants.
        Pediatr Dermatol. 2013; 30: 71-89
        • Calvo-Garcia M.A.
        • Kline-Fath B.M.
        • Adams D.M.
        • Gupta A.
        • Koch B.L.
        • Lim F.Y.
        • et al.
        Imaging evaluation of fetal vascular anomalies.
        Pediatr Radiol. 2015; 45: 1218-1229
        • Mamlouk M.D.
        • Saket R.R.
        • Hess C.P.
        • Dillon W.P.
        Adding value in radiology: establishing a designated quality control radiologist in daily workflow.
        J Am Coll Radiol. 2015; 12: 838-841
        • Andreisek G.
        • Nanz D.
        • Weishaupt D.
        • Pfammatter T.
        MR imaging-guided percutaneous sclerotherapy of peripheral venous malformations with a clinical 1.5-T unit: a pilot study.
        J Vasc Interv Radiol. 2009; 20: 879-887
        • Imbesi S.G.
        • Green D.A.
        • Cho A.
        • Pakbaz R.S.
        MR angiographic-guided percutaneous sclerotherapy for venous vascular malformations: a radiation dose-reduction strategy.
        AJNR Am J Neuroradiol. 2016; 37: 205-209
        • Lewin J.S.
        • Merkle E.M.
        • Duerk J.L.
        • Tarr R.W.
        Low-flow vascular malformations in the head and neck: safety and feasibility of MR imaging-guided percutaneous sclerotherapy—preliminary experience with 14 procedures in three patients.
        Radiology. 1999; 211: 566-570
        • Nour S.G.
        • Monson D.K.
        MRI-guided musculoskeletal soft tissue interventions.
        Top Magn Reson Imaging. 2011; 22: 197-205
        • O'Mara D.M.
        • DiCamillo P.A.
        • Gilson W.D.
        • Herzka D.A.
        • Wacker F.K.
        • Lewin J.S.
        • et al.
        MR-guided percutaneous sclerotherapy of low-flow vascular malformations: clinical experience using a 1.5 tesla MR system.
        Top Magn Reson Imaging. 2017; 45: 1154-1162
        • Xu D.
        • Herzka D.A.
        • Gilson W.D.
        • McVeigh E.R.
        • Lewin J.S.
        • Weiss C.R.
        MR-guided sclerotherapy of low-flow vascular malformations using T2-weighted interrupted bSSFP (T2 W-iSSFP): comparison of pulse sequences for visualization and needle guidance.
        Top Magn Reson Imaging. 2015; 41: 525-535