Advertisement

Association between nephrolithiasis and fatty liver detected on non-enhanced CT for clinically suspected renal colic

  • Abdel-Rauf Zeina
    Correspondence
    Corresponding author at: Department of Radiology, Hillel Yaffe Medical Center, P.O.B. 169, Hadera 38100, Israel.
    Affiliations
    Department of Radiology, Hillel Yaffe Medical Center, Hadera, Israel

    Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
    Search for articles by this author
  • Limor Goldenberg
    Affiliations
    Department of Radiology, Hillel Yaffe Medical Center, Hadera, Israel

    Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
    Search for articles by this author
  • Alicia Nachtigal
    Affiliations
    Department of Radiology, Hillel Yaffe Medical Center, Hadera, Israel

    Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
    Search for articles by this author
  • Rabea Hasadia
    Affiliations
    Division of General Surgery, Hillel Yaffe Medical Center, Hadera, Israel

    Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
    Search for articles by this author
  • Walid Saliba
    Affiliations
    Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel

    Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
    Search for articles by this author

      Highlights

      • Significant association between nephrolithiasis and hepatosteatosis detected by CT for suspected renal colic.
      • Significantly higher chance of calculi was found in patients with fatty liver.
      • Significant association between nephrolithiasis and obesity by CT measurements of visceral fat.
      • Fatty liver possibly an intermediate factor influencing calculi creation.

      Abstract

      Purpose

      To estimate a direct association between nephrolithiasis and hepatosteatosis in patients referred to CT due to clinical suspicion of renal colic.

      Methods

      A 508 non-contrast CT scans were examined for calculi in the kidneys or urinary tract, including measurements of liver attenuation, spleen attenuation, thickness of visceral and subcutaneous fat. Logistic regression examined the association of nephrolithiasis and hepatosteatosis findings.

      Results

      Nephrolithiasis was found in 421 (83.9%) and hepatosteatosis in 80 (15.7%) cases. Univariate analysis showed a statistically significant association between nephrolithiasis and hepatosteatosis OR = 3.24 (95% CI 1.36–7.68), p = 0.008.

      Conclusions

      A significant association was determined between nephrolithiasis and hepatosteatosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roudakova K.
        • Monga M.
        The evolving epidemiology of stone disease.
        Indian J Urol. 2014; 30: 44-48
        • Wong Y.
        • Cook P.
        • Roderick P.
        • Somani B.K.
        Metabolic syndrome and kidney stone disease: a systematic review of literature.
        J Endourol. 2016; 30: 246-253
        • Domingos F.
        • Serra A.
        Metabolic syndrome: a multifaceted risk factor for kidney stones.
        Scand J Urol. 2014; 48: 414-419
        • Ticinesi A.
        • Nouvenne A.
        • Ferraro P.M.
        • Folesani G.
        • Lauretani F.
        • Allegri F.
        • et al.
        Idiopathic calcium nephrolithiasis and hypovitaminosis D: a case-control study.
        Urology. 2016; 87: 40-45
        • Tran T.Y.
        • Flynn M.
        • O'Bel J.
        • Pareek G.
        Calculated insulin resistance correlates with stone-forming urinary metabolic changes and greater stone burden in high-risk stone patients.
        Clin Nephrol. 2016; 85: 316-320
        • Stern J.M.
        • Moazami S.
        • Qiu Y.
        • Kurland I.
        • Chen Z.
        • Agalliu I.
        • et al.
        Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers.
        Urolithiasis. 2016; : 1-9
        • Bedogni G.
        • Nobili V.
        • Tiribelli C.
        Epidemiology of fatty liver: an update.
        World J Gastroenterol. 2014; 20: 9050-9054
        • Mouzaki M.
        • Wang A.Y.
        • Bandsma R.
        • Comelli E.M.
        • Arendt B.M.
        • Zhang L.
        • et al.
        Bile acids and dysbiosis in non-alcoholic fatty liver disease.
        PLoS One. 2016; 11e0151829
        • Pan J.J.
        • Fallon M.B.
        Gender and racial differences in nonalcoholic fatty liver disease.
        World J Hepatol. 2014; 6: 274-283
        • Targher G.
        • Byrne C.D.
        • Lonardo A.
        • Zoppini G.
        • Barbui C.
        Nonalcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis of observational studies.
        J. Hepatol. 2016; https://doi.org/10.1016/j.jhep.2016.05.013
        • Lee S.S.
        • Park S.H.
        Radiologic evaluation of nonalcoholic fatty liver disease.
        World J Gastroenterol. 2014; 20: 7392-7402
        • Paz D.
        Association of renal stone (urolithiasis) with nonalcoholic fatty liver (NAFL).
        Eur. Congress Radiol. 2015; https://doi.org/10.1594/ecr2015/C-2056
        • Nam I.C.
        Association of non-alcoholic fatty liver disease with renal stone disease detected on computed tomography.
        Eur J Radiol Open. 2016; 3: 195-199
        • Einollahi B.
        • Naghii M.R.
        • Sepandi M.
        Association of nonalcoholic fatty liver disease (NAFLD) with urolithiasis.
        Endocr Regul. 2013; 47: 27-32
        • Davidson L.E.
        • Kuk J.L.
        • Church T.S.
        • Ross R.
        Protocol for measurement of liver fat by computed tomography.
        J Appl Physiol. 2006; 100: 864-868
        • Speliotes E.K.
        • Massaro J.M.
        • Hoffmann U.
        • Foster M.C.
        • Sahani D.V.
        • Hirschhorn J.N.
        • et al.
        Liver fat is reproducibly measured using computed tomography in the Framingham Heart Study.
        J Gastroenterol Hepatol. 2008; 23: 894-899
        • Lee S.W.
        • Park S.H.
        • Kim K.W.
        • Choi E.K.
        • Shin Y.M.
        • Kim P.N.
        • et al.
        Unenhanced CT for assessment of macrovesicular hepatic steatosis in living liver donors: comparison of visual grading with liver attenuation index.
        Radiology. 2007; 244: 479-485
        • Kodama Y.
        • Ng C.S.
        • Wu T.T.
        • Ayers G.D.
        • Curley S.A.
        • Abdalla E.K.
        • et al.
        Comparison of CT methods for determining the fat content of the liver.
        Am J Roentgenol. 2007; 188: 1307-1312
        • Park S.H.
        • Kim P.N.
        • Kim K.W.
        • Lee S.W.
        • Yoon S.E.
        • Park S.W.
        • et al.
        Macrovesicular hepatic steatosis in living liver donors: use of CT for quantitative and qualitative assessment.
        Radiology. 2006; 239: 105-112
        • Chung G.E.
        • Kim D.
        • Kwak M.S.
        • Yang J.I.
        • Yim J.Y.
        • Lim S.H.
        • et al.
        The serum vitamin D level is inversely correlated with nonalcoholic fatty liver disease.
        Clin Mol Hepatol. 2016; 22: 146-151
        • Bobulescu I.A.
        • Lotan Y.
        • Zhang J.
        • Rosenthal T.R.
        • Rogers J.T.
        • Adams-Huet B.
        • et al.
        Triglycerides in the human kidney cortex: relationship with body size.
        PLoS One. 2014; 9e101285
        • Mohamed J.
        • Nafizah A.N.
        • Zariyantey A.H.
        • Budin S.B.
        Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation.
        Sultan Qaboos Univ Med J. 2016; 16: e132-e141
        • Kawasaki S.
        • Aoki K.
        • Hasegawa O.
        • Numata K.
        • Tanaka K.
        • Shibata N.
        • et al.
        Sonographic evaluation of visceral fat by measuring para- and perirenal fat.
        J Clin Ultrasound. 2008; 36: 129-133
        • Sahin S.B.
        • Durakoglugil T.
        • Ayaz T.
        • Sahin O.Z.
        • Durakoglugil E.
        • Sumer F.
        • et al.
        Evaluation of para- and perirenal fat thickness and its association with metabolic disorders in polycystic ovary syndrome.
        Endocr Pract. 2015; 21: 878-886
        • House M.G.
        • Fong Y.
        • Arnaoutakis D.J.
        • Sharma R.
        • Winston C.B.
        • Protic M.
        • et al.
        Preoperative predictors for complications after pancreaticoduodenectomy: impact of BMI and body fat distribution.
        J Gastrointest Surg. 2008; 12: 270-278
        • Gorin M.A.
        • Mullins J.K.
        • Pierorazio P.M.
        • Jayram G.
        • Allaf M.E.
        Increased intra-abdominal fat predicts perioperative complications following minimally invasive partial nephrectomy.
        Urology. 2013; 81: 1225-1230