Advertisement

The role of magnetic resonance imaging in the diagnosis of Parkinson's disease: a review

  • Ali M. Al-Radaideh
    Correspondence
    Corresponding author. Department of Medical Imaging, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, Jordan. Tel.: +962-5-3903333x5422; fax: +962-5-3903368.
    Affiliations
    Department of Medical Imaging, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, Jordan
    Search for articles by this author
  • Eman M. Rababah
    Affiliations
    Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, Jordan
    Search for articles by this author

      Abstract

      Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's in elderly people. Different structural and functional neuroimaging methods play a great role in the early diagnosis of neurodegenerative diseases. This review discusses the role of magnetic resonance imaging (MRI) in the diagnosis of PD. MRI provides clinicians with structural and functional information of human brain noninvasively. Advanced quantitative MRI techniques have shown promise for detecting pathological changes related to different stages of PD. Collectively, advanced MRI techniques at high and ultrahigh magnetic fields aid in better understanding of the nature and progression of PD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jackson WS
        Selective vulnerability to neurodegenerative disease: the curious case of prion protein.
        Dis Model Mech. 2014; 7: 21-29https://doi.org/10.1242/dmm.012146
        • Przedborski S
        • Vila M
        • Jackson-Lewis V
        Neurodegeneration: what is it and where are we?.
        J Clin Invest. 2003; 111: 3-10https://doi.org/10.1172/JCI17522
        • Nieoullon A
        Neurodegenerative diseases and neuroprotection: current views and prospects.
        J Appl Biomed. 2011; 9: 173-183https://doi.org/10.2478/v10136-011-0013-4
        • Kanazawa I
        How do neurons die in neurodegenerative diseases?.
        Trends Mol Med. 2001; 7: 339-344
        • Esch T
        • Stefano GB
        • Fricchione GL
        • Benson H
        The role of stress in neurodegenerative diseases and mental disorders.
        Neuro Endocrinol Lett. 2002; 23: 199-208
        • Uttara B
        • Singh AV
        • Zamboni P
        • Mahajan RT
        Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options.
        Curr Neuropharmacol. 2009; 7: 65-74https://doi.org/10.2174/157015909787602823
        • Mattson MP
        Apoptosis in neurodegenerative disorders.
        Nat Rev Mol Cell Biol. 2000; 1: 120-129https://doi.org/10.1038/35040009
        • Friedlander RM
        Apoptosis and caspases in neurodegenerative diseases.
        N Engl J Med. 2003; 348: 1365-1375
        • Mandelkow E-M
        • Mandelkow E
        Biochemistry and cell biology of tau protein in neurofibrillary degeneration.
        Cold Spring Harb Perspect Med. 2012; 2a006247https://doi.org/10.1101/cshperspect.a006247
        • Bertram L
        • Tanzi RE
        The genetic epidemiology of neurodegenerative disease.
        J Clin Invest. 2005; 115: 1449-1457https://doi.org/10.1172/JCI24761
        • Nussbaum RL
        • Ellis CE
        Alzheimer's disease and Parkinson's disease.
        N Engl J Med. 2003; 348: 1356-1364https://doi.org/10.1056/NEJM2003ra020003
        • de Lau LML
        • Breteler MMB
        Epidemiology of Parkinson's disease.
        Lancet Neurol. 2006; 5: 525-535https://doi.org/10.1016/S1474-4422(06)70471-9
        • Van Den Eeden SK
        • Tanner CM
        • Bernstein AL
        • Fross RD
        • Leimpeter A
        • Bloch DA
        • et al.
        Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity.
        Am J Epidemiol. 2003; 157: 1015-1022
        • Morgan JC
        • Currie LJ
        • Harrison MB
        • Bennett JP
        • Trugman JM
        • Wooten GF
        Mortality in levodopa-treated Parkinson's disease.
        Parkinsons Dis. 2014; 2014426976https://doi.org/10.1155/2014/426976
        • Riederer P
        • Wuketich S
        Time course of nigrostriatal degeneration in parkinson's disease. A detailed study of influential factors in human brain amine analysis.
        J Neural Transm. 1976; 38: 277-301
        • Ben-Shlomo Y
        • Sieradzan K
        Idiopathic Parkinson's disease: epidemiology, diagnosis and management.
        Br J Gen Pract. 1995; 45: 261-268
        • Mitra K
        • Gangopadhaya PK
        • Das SK
        Parkinsonism plus syndrome—a review.
        Neurol India. 2003; 51: 183-188
        • Klein C
        • Westenberger A
        Genetics of Parkinson's disease.
        Cold Spring Harb Perspect Med. 2012; 2a008888https://doi.org/10.1101/cshperspect.a008888
        • Jankovic J
        Parkinson's disease: clinical features and diagnosis.
        J Neurol Neurosurg Psychiatry. 2008; 79: 368-376https://doi.org/10.1136/jnnp.2007.131045
        • Davie CA
        A review of Parkinson's disease.
        Br Med Bull. 2008; 86: 109-127https://doi.org/10.1093/bmb/ldn013
        • McKeith IG
        • Dickson DW
        • Lowe J
        • Emre M
        • O'Brien JT
        • Feldman H
        • et al.
        Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium.
        Neurology. 2005; 65: 1863-1872https://doi.org/10.1212/01.wnl.0000187889.17253.b1
        • Kurtz AL
        • Kaufer DI
        Dementia in Parkinson's disease.
        Curr Treat Options Neurol. 2011; 13: 242-254https://doi.org/10.1007/s11940-011-0121-1
        • Kim H-J
        Alpha-synuclein expression in patients with Parkinson's disease: a Clinician's perspective.
        Exp Neurobiol. 2013; 22: 77-83https://doi.org/10.5607/en.2013.22.2.77
        • Wenning GK
        • Scherfler C
        • Granata R
        • Bösch S
        • Verny M
        • Chaudhuri KR
        • et al.
        Time course of symptomatic orthostatic hypotension and urinary incontinence in patients with postmortem confirmed parkinsonian syndromes: a clinicopathological study.
        J Neurol Neurosurg Psychiatry. 1999; 67: 620-623
        • Tanaka M
        • Kim YM
        • Lee G
        • Junn E
        • Iwatsubo T
        • Mouradian MM
        Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective.
        J Biol Chem. 2004; 279: 4625-4631https://doi.org/10.1074/jbc.M310994200
        • Gibb WR
        • Lees AJ
        The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease.
        J Neurol Neurosurg Psychiatry. 1988; 51: 745-752https://doi.org/10.1136/jnnp.51.6.745
        • Stoessl AJ
        Neuroimaging in the early diagnosis of neurodegenerative disease.
        Transl Neurodegener. 2012; 1: 5https://doi.org/10.1186/2047-9158-1-5
        • Loewe C
        • Oschatz E
        • Prayer D
        Imaging of neurodegenerative disorders of the brain in adults.
        Imaging Decis MRI. 2002; 6: 3-18https://doi.org/10.1046/j.1617-0830.6.s1.2.x
        • Ferreira LK
        • Busatto GF
        Neuroimaging in Alzheimer's disease: current role in clinical practice and potential future applications.
        Clinics (Sao Paulo). 2011; 66: 19-24
        • Drayer B
        • Burger P
        • Darwin R
        • Riederer S
        • Herfkens R
        • Johnson GA
        MRI of brain iron.
        Am J Roentgenol. 1986; 147: 103-110https://doi.org/10.2214/ajr.147.1.103
        • Oikawa H
        • Sasaki M
        • Tamakawa Y
        • Ehara S
        • Tohyama K
        The substantia nigra in Parkinson disease: proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings.
        AJNR Am J Neuroradiol. 2002; 23: 1747-1756
        • Sasaki M
        • Shibata E
        • Tohyama K
        • Takahashi J
        • Otsuka K
        • Tsuchiya K
        • et al.
        Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease.
        Neuroreport. 2006; 17: 1215-1218https://doi.org/10.1097/01.wnr.0000227984.84927.a7
        • Kosta P
        • Argyropoulou MI
        • Markoula S
        • Konitsiotis S
        MRI evaluation of the basal ganglia size and iron content in patients with Parkinson's disease.
        J Neurol. 2006; 253: 26-32https://doi.org/10.1007/s00415-005-0914-9
        • Hutchinson M
        • Raff U
        • Lebedev S
        MRI correlates of pathology in parkinsonism: segmented inversion recovery ratio imaging (SIRRIM).
        Neuroimage. 2003; 20: 1899-1902
        • Hutchinson M
        • Raff U
        Detection of Parkinson's disease by MRI: spin–lattice distribution imaging.
        Mov Disord. 2008; 23: 1991-1997https://doi.org/10.1002/mds.22210
        • Minati L
        • Grisoli M
        • Carella F
        • De Simone T
        • Bruzzone MG
        • Savoiardo M
        Imaging degeneration of the substantia nigra in Parkinson disease with inversion-recovery MR imaging.
        AJNR Am J Neuroradiol. 2007; 28: 309-313
        • Ziegler DA
        • Wonderlick JS
        • Ashourian P
        • Hansen LA
        • Young JC
        • Murphy AJ
        • et al.
        Substantia nigra volume loss before basal forebrain degeneration in early Parkinson disease.
        JAMA Neurol. 2013; 70: 241https://doi.org/10.1001/jamaneurol.2013.597
        • Tessa C
        • Giannelli M
        • Della Nave R
        • Lucetti C
        • Berti C
        • Ginestroni A
        • et al.
        A whole-brain analysis in de novo Parkinson disease.
        AJNR Am J Neuroradiol. 2008; 29: 674-680https://doi.org/10.3174/ajnr.A0900
        • Lee HM
        • Kwon K-Y
        • Kim M-J
        • Jang J-W
        • Suh S-I
        • Koh S-B
        • et al.
        Subcortical grey matter changes in untreated, early stage Parkinson's disease without dementia.
        Parkinsonism Relat Disord. 2014; 20: 622-626https://doi.org/10.1016/j.parkreldis.2014.03.009
        • Jia X
        • Liang P
        • Li Y
        • Shi L
        • Wang D
        • Li K
        Longitudinal study of gray matter changes in Parkinson disease.
        AJNR Am J Neuroradiol. 2015; https://doi.org/10.3174/ajnr.A4447
        • Rubino A
        • Assogna F
        • Piras F
        • Di Battista ME
        • Imperiale F
        • Chiapponi C
        • et al.
        Does a volume reduction of the parietal lobe contribute to freezing of gait in Parkinson's disease?.
        Parkinsonism Relat Disord. 2014; 20: 1101-1103https://doi.org/10.1016/j.parkreldis.2014.07.002
        • George S
        • Mufson EJ
        • Leurgans S
        • Shah RC
        • Ferrari C
        • deToledo-Morrell L
        MRI-based volumetric measurement of the substantia innominata in amnestic MCI and mild AD.
        Neurobiol Aging. 2011; 32: 1756-1764https://doi.org/10.1016/j.neurobiolaging.2009.11.006
        • Nicoletti G
        • Fera F
        • Condino F
        • Auteri W
        • Gallo O
        • Pugliese P
        • et al.
        MR imaging of middle cerebellar peduncle width: differentiation of multiple system atrophy from Parkinson disease 1.
        Radiology. 2006; 239: 825-830https://doi.org/10.1148/radiol.2393050459
        • Gama RL
        • Távora DG
        • Bomfim RC
        • Silva CE
        • de Bruin VM
        • de Bruin PFC
        Sleep disturbances and brain MRI morphometry in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy—a comparative study.
        Parkinsonism Relat Disord. 2010; 16: 275-279https://doi.org/10.1016/j.parkreldis.2010.01.002
        • Nair SR
        • Tan LK
        • Mohd Ramli N
        • Lim SY
        • Rahmat K
        • Mohd NH
        A decision tree for differentiating multiple system atrophy from Parkinson's disease using 3-T MR imaging.
        Eur Radiol. 2013; 23: 1459-1466https://doi.org/10.1007/s00330-012-2759-9
        • Quattrone A
        • Nicoletti G
        • Messina D
        • Fera F
        • Condino F
        • Pugliese P
        • et al.
        MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy.
        Radiology. 2008; 246: 214-221https://doi.org/10.1148/radiol.2453061703
        • Sako W
        • Murakami N
        • Miyazaki Y
        • Abe T
        • Harada M
        • Izumi Y
        • et al.
        The effect of tremor onset on middle cerebellar peduncle of Parkinson's disease.
        J Neurol Sci. 2015; https://doi.org/10.1016/j.jns.2015.08.1531
        • Hallgren B
        • Sourander P
        The effect of age on the non-haemin iron in the human brain.
        J Neurochem. 1958; 3: 41-51https://doi.org/10.1111/j.1471-4159.1958.tb12607.x
        • Harder SL
        • Hopp KM
        • Ward H
        • Neglio H
        • Gitlin J
        • Kido D
        Mineralization of the deep gray matter with age: a retrospective review with susceptibility-weighted MR imaging.
        AJNR Am J Neuroradiol. 2008; 29: 176-183https://doi.org/10.3174/ajnr.A0770
        • Schenck JF
        • Zimmerman EA
        High-field magnetic resonance imaging of brain iron: birth of a biomarker?.
        NMR Biomed. 2004; 17: 433-445https://doi.org/10.1002/nbm.922
        • Gerlach M
        • Double KL
        • Ben-Shachar D
        • Zecca L
        • Youdim MBH
        • Riederer P
        Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson's disease.
        Neurotox Res. 2003; 5: 35-44
        • Dexter DT
        • Carayon A
        • Javoy-Agid F
        • Agid Y
        • Wells FR
        • Daniel SE
        • et al.
        Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia.
        Brain. 1991; 114: 1953-1975
        • Griffiths PD
        • Dobson BR
        • Jones GR
        • Clarke DT
        Iron in the basal ganglia in Parkinson's disease. An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy.
        Brain. 1999; 122: 667-673
        • Oakley AE
        • Collingwood JF
        • Dobson J
        • Love G
        • Perrott HR
        • Edwardson JA
        • et al.
        Individual dopaminergic neurons show raised iron levels in Parkinson disease.
        Neurology. 2007; 68: 1820-1825https://doi.org/10.1212/01.wnl.0000262033.01945.9a
        • Riederer P
        • Sofic E
        • Rausch WD
        • Schmidt B
        • Reynolds GP
        • Jellinger K
        • et al.
        Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains.
        J Neurochem. 1989; 52: 515-520
        • Gutteridge JM
        Iron and oxygen radicals in brain.
        Ann Neurol. 1992; 32 Suppl.: S16-S21
        • Martin WRW
        • Wieler M
        • Gee M
        Midbrain iron content in early Parkinson disease: a potential biomarker of disease status.
        Neurology. 2008; 70: 1411-1417https://doi.org/10.1212/01.wnl.0000286384.31050.b5
        • Atasoy HT
        • Nuyan O
        • Tunc T
        • Yorubulut M
        • Unal AE
        • Inan LE
        T2-weighted MRI in Parkinson's disease; substantia nigra pars compacta hypointensity correlates with the clinical scores.
        Neurol India. 2004; 52: 332-337
        • Vymazal J
        • Righini A
        • Brooks RA
        • Canesi M
        • Mariani C
        • Leonardi M
        • et al.
        T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content.
        Radiology. 1999; 211: 489-495https://doi.org/10.1148/radiology.211.2.r99ma53489
        • Haacke EM
        • Cheng NYC
        • House MJ
        • Liu Q
        • Neelavalli J
        • Ogg RJ
        • et al.
        Imaging iron stores in the brain using magnetic resonance imaging.
        Magn Reson Imaging. 2005; 23: 1-25https://doi.org/10.1016/j.mri.2004.10.001
        • Gelman N
        • Gorell JM
        • Barker PB
        • Savage RM
        • Spickler EM
        • Windham JP
        • et al.
        MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content.
        Radiology. 1999; 210: 759-767https://doi.org/10.1148/radiology.210.3.r99fe41759
        • Graham JM
        • Paley MN
        • Grünewald RA
        • Hoggard N
        • Griffiths PD
        Brain iron deposition in Parkinson's disease imaged using the PRIME magnetic resonance sequence.
        Brain. 2000; 123: 2423-2431
        • Ordidge RJ
        • Gorell JM
        • Deniau JC
        • Knight RA
        • Helpern JA
        Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla.
        Magn Reson Med. 1994; 32: 335-341
        • Haacke EM
        • Makki M
        • Ge Y
        • Maheshwari M
        • Sehgal V
        • Hu J
        • et al.
        Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging.
        J Magn Reson Imaging. 2009; 29: 537-544https://doi.org/10.1002/jmri.21676
        • Wharton S
        • Schäfer A
        • Bowtell R
        Susceptibility mapping in the human brain using threshold-based k-space division.
        Magn Reson Med. 2010; 63: 1292-1304https://doi.org/10.1002/mrm.22334
        • Marques JP
        • Bowtell R
        Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility.
        Concepts Magn Reson B. 2005; 25B: 65-78https://doi.org/10.1002/cmr.b.20034
        • Shmueli K
        • de Zwart JA
        • van Gelderen P
        • Li T-Q
        • Dodd SJ
        • Duyn JH
        Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data.
        Magn Reson Med. 2009; 62: 1510-1522https://doi.org/10.1002/mrm.22135
        • Salomir R
        • de Senneville BD
        • Moonen CTW
        A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility.
        Concepts Magn Reson B. 2003; 19B: 26-34https://doi.org/10.1002/cmr.b.10083
        • Liu T
        • Spincemaille P
        • de Rochefort L
        • Kressler B
        • Wang Y
        Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI.
        Magn Reson Med. 2009; 61: 196-204https://doi.org/10.1002/mrm.21828
        • de Rochefort L
        • Liu T
        • Kressler B
        • Liu J
        • Spincemaille P
        • Lebon V
        • et al.
        Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging.
        Magn Reson Med. 2010; 63: 194-206https://doi.org/10.1002/mrm.22187
        • Al-Radaideh AM
        • Wharton SJ
        • Lim S-Y
        • Tench CR
        • Morgan PS
        • Bowtell RW
        • et al.
        Increased iron accumulation occurs in the earliest stages of demyelinating disease: an ultra-high field susceptibility mapping study in clinically isolated syndrome.
        Mult Scler. 2013; 19: 896-903https://doi.org/10.1177/1352458512465135
        • Blazejewska AI
        • Al-Radaideh AM
        • Wharton S
        • Lim SY
        • Bowtell RW
        • Constantinescu CS
        • et al.
        Increase in the iron content of the substantia nigra and red nucleus in multiple sclerosis and clinically isolated syndrome: a 7 Tesla MRI study.
        J Magn Reson Imaging. 2014; https://doi.org/10.1002/jmri.24644
        • Hammond KE
        • Metcalf M
        • Carvajal L
        • Okuda DT
        • Srinivasan R
        • Vigneron D
        • et al.
        Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron.
        Ann Neurol. 2008; 64: 707-713https://doi.org/10.1002/ana.21582
        • Lotfipour AK
        • Wharton S
        • Schwarz ST
        • Gontu V
        • Schäfer A
        • Peters AM
        • et al.
        High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease.
        J Magn Reson Imaging. 2012; 35: 48-55https://doi.org/10.1002/jmri.22752
        • Noh Y
        • Sung YH
        • Lee J
        • Kim EY
        Nigrosome 1 detection at 3 T MRI for the diagnosis of early-stage idiopathic Parkinson disease: assessment of diagnostic accuracy and agreement on imaging asymmetry and clinical laterality.
        AJNR Am J Neuroradiol. 2015; https://doi.org/10.3174/ajnr.A4412
        • Kwon DH
        • Kim JM
        • Oh SH
        • Jeong HJ
        • Park SY
        • Oh ES
        • et al.
        Seven-tesla magnetic resonance images of the substantia nigra in Parkinson disease.
        Ann Neurol. 2012; 71: 267-277https://doi.org/10.1002/ana.22592
        • Blazejewska AI
        • Schwarz ST
        • Pitiot A
        • Stephenson MC
        • Lowe J
        • Bajaj N
        • et al.
        Visualization of nigrosome 1 and its loss in PD: Pathoanatomical correlation and in vivo 7 T MRI.
        Neurology. 2013; https://doi.org/10.1212/WNL.0b013e31829e6fd2
        • Schwarz ST
        • Afzal M
        • Morgan PS
        • Bajaj N
        • Gowland PA
        • Auer DP
        The “swallow tail” appearance of the healthy nigrosome—a new accurate test of Parkinson's disease: a case–control and retrospective cross-sectional MRI study at 3 T.
        PLoS One. 2014; 9e93814https://doi.org/10.1371/journal.pone.0093814
        • Cosottini M
        • Frosini D
        • Pesaresi I
        • Donatelli G
        • Cecchi P
        • Costagli M
        • et al.
        Comparison of 3 T and 7 T susceptibility-weighted angiography of the substantia nigra in diagnosing Parkinson disease.
        AJNR Am J Neuroradiol. 2015; 36: 461-466https://doi.org/10.3174/ajnr.A4158
        • Mueller C
        • Pinter B
        • Reiter E
        • Schocke M
        • Scherfler C
        • Poewe W
        • et al.
        Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI.
        Neurology. 2014; 82 ([United States]): 1752https://doi.org/10.1212/wnl.0000000000000398
        • Horsfield MA
        Magnetization transfer imaging in multiple sclerosis.
        J Neuroimaging. 2005; 15: 58S-67Shttps://doi.org/10.1177/1051228405282242
        • Helms G
        • Draganski B
        • Frackowiak R
        • Ashburner J
        • Weiskopf N
        Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps.
        Neuroimage. 2009; 47: 194-198https://doi.org/10.1016/j.neuroimage.2009.03.053
        • Tambasco N
        • Belcastro V
        • Sarchielli P
        • Floridi P
        • Pierguidi L
        • Menichetti C
        • et al.
        A magnetization transfer study of mild and advanced Parkinson's disease.
        Eur J Neurol. 2011; 18: 471-477https://doi.org/10.1111/j.1468-1331.2010.03184.x
        • Eckert T
        • Sailer M
        • Kaufmann J
        • Schrader C
        • Peschel T
        • Bodammer N
        • et al.
        Differentiation of idiopathic Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging.
        Neuroimage. 2004; 21: 229-235
        • Anik Y
        • Iseri P
        • Demirci A
        • Komsuoglu S
        • Inan N
        Magnetization transfer ratio in early period of Parkinson disease.
        Acad Radiol. 2007; 14: 189-192https://doi.org/10.1016/j.acra.2006.11.005
        • Tambasco N
        • Pelliccioli GP
        • Chiarini P
        • Montanari GE
        • Leone F
        • Mancini ML
        • et al.
        Magnetization transfer changes of grey and white matter in Parkinson's disease.
        Neuroradiology. 2003; 45: 224-230https://doi.org/10.1007/s00234-002-0925-5
        • Hanyu H
        • Asano T
        • Sakurai H
        • Takasaki M
        • Shindo H
        • Abe K
        Magnetisation transfer measurements of the subcortical grey and white matter in Parkinson's disease with and without dementia and in progressive supranuclear palsy.
        Neuroradiology. 2001; 43: 542-546
        • Beaulieu C
        The basis of anisotropic water diffusion in the nervous system—a technical review.
        NMR Biomed. 2002; 15: 435-455https://doi.org/10.1002/nbm.782
        • Le Bihan D
        • van Zijl P
        From the diffusion coefficient to the diffusion tensor.
        NMR Biomed. 2002; 15: 431-434https://doi.org/10.1002/nbm.798
        • Pyatigorskaya N
        • Gallea C
        • Garcia-Lorenzo D
        • Vidailhet M
        • Lehericy S
        A review of the use of magnetic resonance imaging in Parkinson's disease.
        Ther Adv Neurol Disord. 2014; 7: 206-220https://doi.org/10.1177/1756285613511507
        • Planetta PJ
        • Prodoehl J
        • Corcos DM
        • Vaillancourt DE
        Use of MRI to monitor Parkinson's disease.
        Neurodegener Dis Manag. 2011; 1: 67-77https://doi.org/10.2217/nmt.10.6
        • Chan L-L
        • Rumpel H
        • Yap K
        • Lee E
        • Loo H-V
        • Ho G-L
        • et al.
        Case control study of diffusion tensor imaging in Parkinson's disease.
        J Neurol Neurosurg Psychiatry. 2007; 78: 1383-1386https://doi.org/10.1136/jnnp.2007.121525
        • Du G
        • Lewis MM
        • Styner M
        • Shaffer ML
        • Sen S
        • Yang QX
        • et al.
        Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson's disease.
        Mov Disord. 2011; 26: 1627-1632https://doi.org/10.1002/mds.23643
        • Péran P
        • Cherubini A
        • Assogna F
        • Piras F
        • Quattrocchi C
        • Peppe A
        • et al.
        Magnetic resonance imaging markers of Parkinson's disease nigrostriatal signature.
        Brain. 2010; 133: 3423-3433https://doi.org/10.1093/brain/awq212
        • Vaillancourt DE
        • Spraker MB
        • Prodoehl J
        • Abraham I
        • Corcos DM
        • Zhou XJ
        • et al.
        High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease.
        Neurology. 2009; 72: 1378-1384https://doi.org/10.1212/01.wnl.0000340982.01727.6e
        • Yoshikawa K
        • Nakata Y
        • Yamada K
        • Nakagawa M
        Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI.
        J Neurol Neurosurg Psychiatry. 2004; 75: 481-484
        • Zhan W
        • Kang GA
        • Glass GA
        • Zhang Y
        • Shirley C
        • Millin R
        • et al.
        Regional alterations of brain microstructure in Parkinson's disease using diffusion tensor imaging.
        Mov Disord. 2012; 27: 90-97https://doi.org/10.1002/mds.23917
        • Seppi K
        • Poewe W
        Brain magnetic resonance imaging techniques in the diagnosis of parkinsonian syndromes.
        Neuroimaging Clin N Am. 2010; 20: 29-55https://doi.org/10.1016/j.nic.2009.08.016
        • Seppi K
        • Schocke MFH
        An update on conventional and advanced magnetic resonance imaging techniques in the differential diagnosis of neurodegenerative parkinsonism.
        Curr Opin Neurol. 2005; 18: 370-375
        • Cochrane CJ
        • Ebmeier KP
        Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis.
        Neurology. 2013; 80: 857-864https://doi.org/10.1212/WNL.0b013e318284070c
        • Paviour DC
        • Thornton JS
        • Lees AJ
        • Jäger HR
        Diffusion-weighted magnetic resonance imaging differentiates parkinsonian variant of multiple-system atrophy from progressive supranuclear palsy.
        Mov Disord. 2007; 22: 68-74https://doi.org/10.1002/mds.21204
        • Vercruysse S
        • Leunissen I
        • Vervoort G
        • Vandenberghe W
        • Swinnen S
        • Nieuwboer A
        Microstructural changes in white matter associated with freezing of gait in Parkinson's disease.
        Mov Disord. 2015; 30: 567-576https://doi.org/10.1002/mds.26130
        • Ross B
        • Bluml S
        Magnetic resonance spectroscopy of the human brain.
        Anat Rec. 2001; 265: 54-84
        • Boska MD
        • Lewis TB
        • Destache CJ
        • Benner EJ
        • Nelson JA
        • Uberti M
        • et al.
        Quantitative 1H magnetic resonance spectroscopic imaging determines therapeutic immunization efficacy in an animal model of Parkinson's disease.
        J Neurosci. 2005; 25: 1691-1700https://doi.org/10.1523/JNEUROSCI.4364-04.2005
        • Clarke CE
        • Lowry M
        Basal ganglia metabolite concentrations in idiopathic Parkinson's disease and multiple system atrophy measured by proton magnetic resonance spectroscopy.
        Eur J Neurol. 2000; 7: 661-665
        • Choe BY
        • Park JW
        • Lee KS
        • Son BC
        • Kim MC
        • Kim BS
        • et al.
        Neuronal laterality in Parkinson's disease with unilateral symptom by in vivo 1H magnetic resonance spectroscopy.
        Invest Radiol. 1998; 33: 450-455
        • O'Neill J
        • Schuff N
        • Marks WJ
        • Feiwell R
        • Aminoff MJ
        • Weiner MW
        Quantitative 1H magnetic resonance spectroscopy and MRI of Parkinson's disease.
        Mov Disord. 2002; 17: 917-927https://doi.org/10.1002/mds.10214
        • Taylor-Robinson SD
        • Turjanski N
        • Bhattacharya S
        • Seery JP
        • Sargentoni J
        • Brooks DJ
        • et al.
        A proton magnetic resonance spectroscopy study of the striatum and cerebral cortex in Parkinson's disease.
        Metab Brain Dis. 1999; 14: 45-55
        • Hu MT
        • Taylor-Robinson SD
        • Chaudhuri KR
        • Bell JD
        • Morris RG
        • Clough C
        • et al.
        Evidence for cortical dysfunction in clinically non-demented patients with Parkinson's disease: a proton MR spectroscopy study.
        J Neurol Neurosurg Psychiatry. 1999; 67: 20-26
        • Lucetti C
        • Gambaccini G
        • Bianchi MC
        • Tosetti M
        • Bonuccelli U
        • Del Dotto P
        • et al.
        Proton magnetic resonance spectroscopy (1H-MRS) of motor cortex and basal ganglia in de novo Parkinson's disease patients..
        Neurol Sci. 2001; 22: 69-70https://doi.org/10.1007/s100720170051
        • Camicioli RM
        • Korzan JR
        • Foster SL
        • Fisher NJ
        • Emery DJ
        • Bastos AC
        • et al.
        Posterior cingulate metabolic changes occur in Parkinson's disease patients without dementia.
        Neurosci Lett. 2004; 354: 177-180
        • Camicioli RM
        • Hanstock CC
        • Bouchard TP
        • Gee M
        • Fisher NJ
        • Martin WR
        Magnetic resonance spectroscopic evidence for presupplementary motor area neuronal dysfunction in Parkinson's disease.
        Mov Disord. 2007; 22: 382-386https://doi.org/10.1002/mds.21288
        • Gröger A
        • Chadzynski G
        • Godau J
        • Berg D
        • Klose U
        Three-dimensional magnetic resonance spectroscopic imaging in the substantia nigra of healthy controls and patients with Parkinson's disease.
        Eur Radiol. 2011; 21: 1962-1969https://doi.org/10.1007/s00330-011-2123-5
        • Levin BE
        • Katzen HL
        • Maudsley A
        • Post J
        • Myerson C
        • Govind V
        • et al.
        Whole-brain proton MR spectroscopic imaging in Parkinson's disease.
        J Neuroimaging. 2014; 24: 39-44https://doi.org/10.1111/j.1552-6569.2012.00733.x
        • Griffith HR
        • Okonkwo OC
        • O'Brien T
        • Hollander JA
        Reduced brain glutamate in patients with Parkinson's disease.
        NMR Biomed. 2008; 21: 381-387https://doi.org/10.1002/nbm.1203
        • Oz G
        • Terpstra M
        • Tkác I
        • Aia P
        • Lowary J
        • Tuite PJ
        • et al.
        Proton MRS of the unilateral substantia nigra in the human brain at 4 Tesla: detection of high GABA concentrations.
        Magn Reson Med. 2006; 55: 296-301https://doi.org/10.1002/mrm.20761
        • Emir UE
        • Tuite PJ
        • Öz G
        Elevated pontine and putamenal GABA levels in mild–moderate Parkinson disease detected by 7 Tesla proton MRS.
        PLoS One. 2012; 7e30918https://doi.org/10.1371/journal.pone.0030918
        • Di Costanzo A
        • Trojsi F
        • Tosetti M
        • Schirmer T
        • Lechner SM
        • Popolizio T
        • et al.
        Proton MR spectroscopy of the brain at 3 T: an update.
        Eur Radiol. 2007; 17: 1651-1662https://doi.org/10.1007/s00330-006-0546-1
        • Haslinger B
        Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa.
        Brain. 2001; 124: 558-570https://doi.org/10.1093/brain/124.3.558
        • Sabatini U
        • Boulanouar K
        • Fabre N
        • Martin F
        • Carel C
        • Colonnese C
        • et al.
        Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study.
        Brain. 2000; 123: 394-403https://doi.org/10.1093/brain/123.2.394
        • Wu T
        • Hallett M
        A functional MRI study of automatic movements in patients with Parkinson's disease.
        Brain. 2005; 128: 2250-2259https://doi.org/10.1093/brain/awh569
        • Deiber MP
        • Passingham RE
        • Colebatch JG
        • Friston KJ
        • Nixon PD
        • Frackowiak RS
        Cortical areas and the selection of movement: a study with positron emission tomography.
        Exp Brain Res. 1991; 84: 393-402
        • Deiber MP
        • Ibañez V
        • Sadato N
        • Hallett M
        Cerebral structures participating in motor preparation in humans: a positron emission tomography study.
        J Neurophysiol. 1996; 75: 233-247
        • Tanji J
        • Hoshi E
        Behavioral planning in the prefrontal cortex.
        Curr Opin Neurobiol. 2001; 11: 164-170
        • Grafton ST
        Contributions of functional imaging to understanding parkinsonian symptoms.
        Curr Opin Neurobiol. 2004; 14: 715-719https://doi.org/10.1016/j.conb.2004.10.010
        • Baudrexel S
        • Witte T
        • Seifried C
        • von Wegner F
        • Beissner F
        • Klein JC
        • et al.
        Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease.
        Neuroimage. 2011; 55: 1728-1738https://doi.org/10.1016/j.neuroimage.2011.01.017
        • Hacker CD
        • Perlmutter JS
        • Criswell SR
        • Ances BM
        • Snyder AZ
        Resting state functional connectivity of the striatum in Parkinson's disease.
        Brain. 2012; 135: 3699-3711https://doi.org/10.1093/brain/aws281
        • Helmich RC
        • Derikx LC
        • Bakker M
        • Scheeringa R
        • Bloem BR
        • Toni I
        Spatial remapping of cortico-striatal connectivity in Parkinson's disease.
        Cereb Cortex. 2010; 20: 1175-1186https://doi.org/10.1093/cercor/bhp178
        • Kwak Y
        • Peltier S
        • Bohnen NI
        • Müller MLTM
        • Dayalu P
        • Seidler RD
        Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson's disease.
        Front Syst Neurosci. 2010; 4: 143https://doi.org/10.3389/fnsys.2010.00143
        • Seibert TM
        • Murphy EA
        • Kaestner EJ
        • Brewer JB
        Interregional correlations in Parkinson disease and Parkinson-related dementia with resting functional MR imaging.
        Radiology. 2012; 263: 226-234https://doi.org/10.1148/radiol.12111280
        • Agosta F
        • Caso F
        • Stankovic I
        • Inuggi A
        • Petrovic I
        • Svetel M
        • et al.
        Cortico-striatal-thalamic network functional connectivity in hemiparkinsonism.
        Neurobiol Aging. 2014; 35: 2592-2602https://doi.org/10.1016/j.neurobiolaging.2014.05.032
        • Wu T
        • Wang L
        • Chen Y
        • Zhao C
        • Li K
        • Chan P
        Changes of functional connectivity of the motor network in the resting state in Parkinson's disease.
        Neurosci Lett. 2009; 460: 6-10https://doi.org/10.1016/j.neulet.2009.05.046
        • Wu T
        • Long X
        • Wang L
        • Hallett M
        • Zang Y
        • Li K
        • et al.
        Functional connectivity of cortical motor areas in the resting state in Parkinson's disease.
        Hum Brain Mapp. 2011; 32: 1443-1457https://doi.org/10.1002/hbm.21118
        • Loane C
        • Politis M
        Positron emission tomography neuroimaging in Parkinson's disease.
        Am J Transl Res. 2011; 3: 323-341
        • Yang ZL
        • Zhang LJ
        PET/MRI of central nervous system: current status and future perspective.
        Eur Radiol. 2016; : 1-8https://doi.org/10.1007/s00330-015-4202-5
        • Barthel H
        • Schroeter ML
        • Hoffmann K-T
        • Sabri O
        PET/MR in dementia and other neurodegenerative diseases.
        Semin Nucl Med. 2015; 45: 224-233https://doi.org/10.1053/j.semnuclmed.2014.12.003
        • Hu Z
        • Yang W
        • Liu H
        • Wang K
        • Bao C
        • Song T
        • et al.
        From PET/CT to PET/MRI: advances in instrumentation and clinical applications.
        Mol Pharm. 2014; 11: 3798-3809https://doi.org/10.1021/mp500321h
        • Herzog H
        PET/MRI: challenges, solutions and perspectives.
        Z Med Phys. 2012; 22: 281-298https://doi.org/10.1016/j.zemedi.2012.07.003
        • Shao Y
        • Cherry SR
        • Farahani K
        • Meadors K
        • Siegel S
        • Silverman RW
        • et al.
        Simultaneous PET and MR imaging.
        Phys Med Biol. 1997; 42: 1965-1970
        • Shao Y
        • Cherry SR
        • Farahani K
        • Slates R
        • Silverman RW
        • Meadors K
        • et al.
        Development of a PET detector system compatible with MRI/NMR systems.
        IEEE Trans Nucl Sci. 1997; 44: 1167-1171https://doi.org/10.1109/23.596982
        • Slates RB
        • Farahani K
        • Shao Y
        • Marsden PK
        • Taylor J
        • Summers PE
        • et al.
        A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner.
        Phys Med Biol. 1999; 44: 2015-2027
        • Pichler BJ
        • Wehrl HF
        • Kolb A
        • Judenhofer MS
        Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging?.
        Semin Nucl Med. 2008; 38: 199-208https://doi.org/10.1053/j.semnuclmed.2008.02.001
        • Pichler BJ
        • Wehrl HF
        • Judenhofer MS
        Latest advances in molecular imaging instrumentation.
        J Nucl Med. 2008; 49 Suppl. 2: 5S-23Shttps://doi.org/10.2967/jnumed.108.045880
        • Lucas AJ
        • Hawkes RC
        • Ansorge RE
        • Williams GB
        • Nutt RE
        • Clark JC
        • et al.
        Development of a combined microPET-MR system.
        Technol Cancer Res Treat. 2006; 5: 337-341
        • Cavalcanti Filho JLG
        • da Fonseca LMB
        • Domingues RC
        • Domingues RC
        • Machado Neto LdS
        • Gasparetto EL
        Brain 18F-FDG PET-MRI coregistration: iconographic essay.
        Radiol Bras. 2010; 43: 195-201
        • Pichler BJ
        • Kolb A
        • Nägele T
        • Schlemmer H-P
        PET/MRI: paving the way for the next generation of clinical multimodality imaging applications.
        J Nucl Med. 2010; 51: 333-336https://doi.org/10.2967/jnumed.109.061853
        • Struck AF
        • Hall LT
        • Kusmirek JE
        • Gallagher CL
        • Floberg JM
        • Jaskowiak CJ
        • et al.
        (18)F-DOPA PET with and without MRI fusion, a receiver operator characteristics comparison.
        Am J Nucl Med Mol Imaging. 2012; 2: 475-482
        • Hofmann M
        • Bezrukov I
        • Mantlik F
        • Aschoff P
        • Steinke F
        • Beyer T
        • et al.
        MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods.
        J Nucl Med. 2011; 52: 1392-1399https://doi.org/10.2967/jnumed.110.078949
        • Dixon WT
        Simple proton spectroscopic imaging.
        Radiology. 1984; 153: 189-194https://doi.org/10.1148/radiology.153.1.6089263
        • Robson MD
        • Gatehouse PD
        • Bydder M
        • Bydder GM
        Magnetic resonance: an introduction to ultrashort TE (UTE) imaging.
        J Comput Assist Tomogr. 2003; 27: 825-846
        • Torigian DA
        • Zaidi H
        • Kwee TC
        • Saboury B
        • Udupa JK
        • Cho Z-H
        • et al.
        PET/MR imaging: technical aspects and potential clinical applications.
        Radiology. 2013; 267: 26-44https://doi.org/10.1148/radiol.13121038
        • Lehéricy S
        • Sharman MA
        • Dos Santos CL
        • Paquin R
        • Gallea C
        Magnetic resonance imaging of the substantia nigra in Parkinson's disease.
        Mov Disord. 2012; 27: 822-830https://doi.org/10.1002/mds.25015
        • Gupta D
        • Saini J
        • Kesavadas C
        • Sarma PS
        • Kishore A
        Utility of susceptibility-weighted MRI in differentiating Parkinson's disease and atypical parkinsonism.
        Neuroradiology. 2010; 52: 1087-1094https://doi.org/10.1007/s00234-010-0677-6
        • Zhang K
        • Li KL
        • Wang X
        Magnetization transfer imaging of the brain of Parkinson's disease using voxel-based analysis.
        Eur Congr Radiol. 2011; : 1-7https://doi.org/10.1594/ecr2011/C-1198
        • Zhan W
        • Kang GA
        • Glass GA
        • Marks WJ
        • Zhang Y
        • Nezamzadeh M
        • et al.
        Voxel-based DTI analysis of white matter alterations in Parkinson's disease.
        Proc Int Soc Magn Reson Med. 2008; : 267
        • Péran P
        • Luccichenti G
        • Cherubini A
        • Hagberg GE
        • Sabatini U
        High-field neuroimaging in Parkinson's disease.
        High F Brain MRI. 2006; : 194-200