Advertisement

Volumetric segmentation of ADC maps and utility of standard deviation as measure of tumor heterogeneity in soft tissue tumors

Published:November 30, 2015DOI:https://doi.org/10.1016/j.clinimag.2015.11.017

      Abstract

      Purpose

      Determine interobserver concordance of semiautomated three-dimensional volumetric and two-dimensional manual measurements of apparent diffusion coefficient (ADC) values in soft tissue masses (STMs) and explore standard deviation (SD) as a measure of tumor ADC heterogeneity.

      Results

      Concordance correlation coefficients for mean ADC increased with more extensive sampling. Agreement on the SD of tumor ADC values was better for large regions of interest and multislice methods. Correlation between mean and SD ADC was low, suggesting that these parameters are relatively independent.

      Conclusion

      Mean ADC of STMs can be determined by volumetric quantification with high interobserver agreement. STM heterogeneity merits further investigation as a potential imaging biomarker that complements other functional magnetic resonance imaging parameters.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Subhawong TK
        • Jacobs MA
        • Fayad LM
        Diffusion-weighted MR imaging for characterizing musculoskeletal lesions.
        Radiographics. 2014; 34: 1163-1177
        • Del Grande F
        • Subhawong T
        • Weber K
        • Aro M
        • Mugera C
        • Fayad LM
        Detection of soft-tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T.
        Radiology. 2014; 271: 499-511
        • Fayad LM
        • Jacobs MA
        • Wang X
        • Carrino JA
        • Bluemke DA
        Musculoskeletal tumors: how to use anatomic, functional, and metabolic mr techniques.
        Radiology. 2012; 265: 340-356
        • Uhl M
        • Saueressig U
        • Koehler G
        • Kontny U
        • Niemeyer C
        • Reichardt W
        • et al.
        Evaluation of tumour necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas.
        Pediatr Radiol. 2006; 36: 1306-1311
        • Babsky AM
        • Zhang H
        • Hekmatyar SK
        • Hutchins GD
        • Bansal N
        Monitoring chemotherapeutic response in RIF-1 tumors by single-quantum and triple-quantum-filtered (23)Na MRI, (1)H diffusion-weighted MRI and PET imaging.
        Magn Reson Imaging. 2007; 25: 1015-1023
        • Dudeck O
        • Zeile M
        • Pink D
        • Pech M
        • Tunn PU
        • Reichardt P
        • et al.
        Diffusion-weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft-tissue sarcomas.
        J Magn Reson Imaging. 2008; 27: 1109-1113
        • Kharuzhyk SA
        • Petrovskaya NA
        • Vosmitel MA
        Diffusion-weighted magnetic resonance imaging in non-invasive monitoring of antiangiogenic therapy in experimental tumor model.
        Exp Oncol. 2010; 32: 104-106
        • Baunin C
        • Schmidt G
        • Baumstarck K
        • Bouvier C
        • Gentet JC
        • Aschero A
        • et al.
        Value of diffusion-weighted images in differentiating mid-course responders to chemotherapy for osteosarcoma compared to the histological response: preliminary results.
        Skeletal Radiol. 2012; 41: 1141-1149
        • Byun BH
        • Kong CB
        • Lim I
        • Choi CW
        • Song WS
        • Cho WH
        • et al.
        Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: preliminary results in osteosarcoma.
        J Nucl Med. 2013; 54: 1053-1059
        • Abdel Razek AA
        • Nada N
        Role of diffusion-weighted MRI in differentiation of masticator space malignancy from infection.
        Dentomaxillofac Radiol. 2013; 42: 20120183
        • Vandecaveye V
        • De Keyzer F
        • Hermans R
        Diffusion-weighted magnetic resonance imaging in neck lymph adenopathy.
        Cancer Imaging. 2008; 8: 173-180
        • Maeda M
        • Matsumine A
        • Kato H
        • Kusuzaki K
        • Maier SE
        • Uchida A
        • et al.
        Soft-tissue tumors evaluated by line-scan diffusion-weighted imaging: influence of myxoid matrix on the apparent diffusion coefficient.
        J Magn Reson Imaging. 2007; 25: 1199-1204
        • Subhawong TK
        • Durand DJ
        • Thawait GK
        • Jacobs MA
        • Fayad LM
        Characterization of soft tissue masses: can quantitative diffusion weighted imaging reliably distinguish cysts from solid masses?.
        Skeletal Radiol. 2013; 42: 1583-1592
        • Liu JH
        • Tian SF
        • Ju Y
        • Li Y
        • Chen AL
        • Chen LH
        • et al.
        Apparent diffusion coefficient measurement by diffusion weighted magnetic resonance imaging is a useful tool in differentiating renal tumors.
        BMC Cancer. 2015; https://doi.org/10.1186/s12885-015-1221-1
        • Li S
        • Cheng J
        • Zhang Y
        • Zhang Z
        Differentiation of benign and malignant lesions of the tongue by using diffusion-weighted magnetic resonance imaging at 3.0 T.
        Dentomaxillofac Radiol. 2015; 31: 20140325
        • Ahlawat S
        • Khandheria P
        • Subhawong TK
        • Fayad LM
        Differentiation of benign and malignant skeletal lesions with quantitative diffusion weighted MRI at 3 T.
        Eur J Radiol. 2015; 84: 1091-1097
        • Qu RF
        • Guo DR
        • Chang ZX
        • Meng J
        • Sun Y
        • Hao SH
        • et al.
        Differential diagnosis of benign and malignant breast tumors using apparent diffusion coefficient value measured through diffusion-weighted magnetic resonance imaging.
        J Comput Assist Tomogr. 2015; 39: 513-522
        • Karakas O
        • Karakas E
        • Dogan F
        • Kilicaslan N
        • Camuzcuoglu A
        • Incebiyik A
        • et al.
        Diffusion-weighted MRI in the differential diagnosis of uterine endometrial cavity tumors.
        Wien Klin Wochenschr. 2015; 127: 266-273
        • Gődény M
        • Léránt G
        New opportunities, MRI biomarkers in the evaluation of head and neck cancer.
        Magy Onkol. 2014; 58: 269-280
        • Wang T
        • Wu X
        • Cui Y
        • Chu C
        • Ren G
        • Li W
        Role of apparent diffusion coefficients with diffusion-weighted magnetic resonance imaging in differentiating between benign and malignant bone tumors.
        World J Surg Oncol. 2014; 12: 365
        • Yun BL
        • Cho N
        • Li M
        • Jang MH
        • Park SY
        • Kang HC
        • et al.
        Intratumoral heterogeneity of breast cancer xenograft models: texture analysis of diffusion-weighted MR imaging.
        Korean J Radiol. 2014; 15: 591-604
        • Vouche M
        • Salem R
        • Lewandowski RJ
        • Miller FH
        Can volumetric ADC measurement help predict response to Y90 radioembolization in HCC?.
        Abdom Imaging. 2015; 40: 1471-1480
        • Lin LI
        A concordance correlation coefficient to evaluate reproducibility.
        Biometrics. 1989; 45: 255-268
        • Ahlawat S
        • Khandheria P
        • Del Grande F
        • Morelli J
        • Subhawong TK
        • Demehri S
        • et al.
        Interobserver variability of selective region-of-interest measurement protocols for quantitative diffusion weighted imaging in soft tissue masses: comparison with whole tumor volume measurements.
        J Magn Reson Imaging. 2015; https://doi.org/10.1002/jmri.24994
        • Just N
        Improving tumour heterogeneity MRI assessment with histograms.
        Br J Cancer. 2014; 111: 2205-2213
        • Nowosielski M
        • Recheis W
        • Goebel G
        • Güler O
        • Tinkhauser G
        • Kostron H
        • et al.
        ADC histograms predict response to anti-angiogenic therapy in patients with recurrent high-grade glioma.
        Neuroradiology. 2011; 53: 291-302
        • Eary JF
        • O’Sullivan F
        • O’Sullivan J
        • Conrad EU
        Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome.
        J Nucl Med. 2008; 49: 1973-1979
        • Alic L
        • van Vliet M
        • van Dijke CF
        • Eggermont AM
        • Veenland JF
        • Niessen WJ
        Heterogeneity in DCE-MRI parametric maps: a biomarker for treatment response?.
        Phys Med Biol. 2011; 56: 1601-1616
        • Michallek F
        • Dewey M
        Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review.
        Eur Radiol. 2014; 24: 60-69
        • Asselin MC
        • O’Connor JP
        • Boellaard R
        • Thacker NA
        • Jackson A
        Quantifying heterogeneity in human tumours using MRI and PET.
        Eur J Cancer. 2012; 48: 447-455