Advertisement

Hypointense signal lesions of the articular cartilage: a review of current concepts

      Abstract

      Discussion of articular cartilage disease detection by MRI usually focuses on the presence of bright signal on T2-weighted sequences, such as in Grade 1 chondromalacia and cartilage fissures containing fluid. Less emphasis has been placed on how cartilage disease may be manifested by dark signal on T2-weighted sequences. The appearance of the recently described “cartilage black line sign” of the femoral trochlea highlights these lesions and further raises the question of their etiology. We illustrate various hypointense signal lesions that are not restricted to the femoral trochlea of the knee joint and discuss the possible etiologies for these lesions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Neogi T
        • Felson D
        • Niu J
        • Lynch J
        • Nevitt M
        • Guermazi A
        • et al.
        Cartilage loss occurs in the same subregions as subchondral bone attrition: a within-knee subregion-matched approach from the Multicenter Osteoarthritis Study.
        Arthritis Rheum. 2009; 61: 1539-1544
        • Roemer FW
        • Guermazi A
        • Javaid MK
        • Lynch JA
        • Niu J
        • Zhang Y
        • et al.
        Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis.
        Ann Rheum Dis. 2009; 68: 1461-1465
        • Kijowski R
        • Blankenbaker DG
        • Davis KW
        • Shinki K
        • Kaplan LD
        • De Smet AA
        Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint.
        Radiology. 2009; 250: 839-848
        • Stephens T
        • Diduch DR
        • Balin JI
        • Gaskin CM
        The cartilage black line sign: an unexpected MRI appearance of deep cartilage fissuring in three patients.
        Skelet Radiol. 2011; 40: 113-116
        • Broderick LS
        • Turner DA
        • Renfrew DL
        • Schnitzer TJ
        • Huff JP
        • Harris C
        Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs arthroscopy.
        AJR Am J Roentgenol. 1994; 162: 99-103
        • Konig H
        • Sauter R
        • Deimling M
        • Vogt M
        Cartilage disorders: comparison of spin-echo, CHESS, and FLASH sequence MR images.
        Radiology. 1987; 164: 753-758
        • Wissman RD
        • Ingalls J
        • Nepute J
        • Von Fischer N
        • Radhakrishnan R
        • Hendry D
        • et al.
        The trochlear cleft: the "black line" of the trochlear trough.
        Skelet Radiol. 2012; 41: 1121-1126
        • Xia Y
        Magic-angle effect in magnetic resonance imaging of articular cartilage: a review.
        Investig Radiol. 2000; 35: 602-621
        • Brandt KD
        • Doherty M
        • Lohmander S
        Osteoarthritis.
        Oxford University Press, New York2003
        • Venn M
        • Maroudas A
        Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition.
        Ann Rheum Dis. 1977; 36: 121-129
        • Clark JM
        Variation of collagen fiber alignment in a joint surface: a scanning electron microscope study of the tibial plateau in dog, rabbit, and man.
        J Orthop Res. 1991; 9: 246-257
        • Goodwin DW
        • Wadghiri YZ
        • Zhu H
        • Vinton CJ
        • Smith ED
        • Dunn JF
        Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance.
        AJR Am J Roentgenol. 2004; 182: 311-318
        • Jeffery AK
        • Blunn GW
        • Archer CW
        • Bentley G
        Three-dimensional collagen architecture in bovine articular cartilage.
        J Bone Joint Surg Br. 1991; 73: 795-801
        • ap Gwynn I
        • Wade S
        • Kaab MJ
        • Owen GR
        • Richards RG
        Freeze-substitution of rabbit tibial articular cartilage reveals that radial zone collagen fibres are tubules.
        J Microsc. 2000; 197: 159-172
        • Goodwin DW
        • Zhu H
        • Dunn JF
        In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy.
        AJR Am J Roentgenol. 2000; 174: 405-409
        • Fullerton GD
        • Cameron IL
        • Ord VA
        Orientation of tendons in the magnetic field and its effect on T2 relaxation times.
        Radiology. 1985; 155: 433-435
        • Henkelman RM
        • Stanisz GJ
        • Kim JK
        • Bronskill MJ
        Anisotropy of NMR properties of tissues.
        Magn Reson Med. 1994; 32: 592-601
        • Rubenstein J
        • Recht M
        • Disler DG
        • Kim J
        • Henkelman RM
        Laminar structures on MR images of articular cartilage.
        Radiology. 1997; 204 ([author reply 17–18]): 15-16
        • Xia Y
        Relaxation anisotropy in cartilage by NMR microscopy (muMRI) at 14-microm resolution.
        Magn Reson Med. 1998; 39: 941-949
        • Dardzinski BJ
        • Mosher TJ
        • Li S
        • Van Slyke MA
        • Smith MB
        Spatial variation of T2 in human articular cartilage.
        Radiology. 1997; 205: 546-550
        • Alhadlaq HA
        • Xia Y
        The structural adaptations in compressed articular cartilage by microscopic MRI (microMRI) T(2) anisotropy.
        Osteoarthritis Cartilage. 2004; 12: 887-894
        • Alhadlaq HA
        • Xia Y
        Modifications of orientational dependence of microscopic magnetic resonance imaging T(2) anisotropy in compressed articular cartilage.
        J Magn Reson Imaging. 2005; 22: 665-673
        • de Visser SK
        • Crawford RW
        • Pope JM
        Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging.
        Osteoarthritis Cartilage. 2008; 16: 83-89
        • Grunder W
        • Kanowski M
        • Wagner M
        • Werner A
        Visualization of pressure distribution within loaded joint cartilage by application of angle-sensitive NMR microscopy.
        Magn Reson Med. 2000; 43: 884-891
        • Mosher TJ
        • Liu Y
        • Torok CM
        Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running.
        Osteoarthritis Cartilage. 2010; 18: 358-364
        • Dunham J
        • Chambers MG
        • Jasani MK
        • Bitensky L
        • Chayen J
        Changes in the orientation of proteoglycans during the early development of natural murine osteoarthritis.
        J Orthop Res. 1990; 8: 101-104
        • Dunham J
        • Shackleton DR
        • Nahir AM
        • Billingham ME
        • Bitensky L
        • Chayen J
        • et al.
        Altered orientation of glycosaminoglycans and cellular changes in the tibial cartilage in the first two weeks of experimental canine osteoarthritis.
        J Orthop Res. 1985; 3: 258-268
        • Wolff SD
        • Balaban RS
        Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo.
        Magn Reson Med. 1989; 10: 135-144
        • Maroudas AI
        Balance between swelling pressure and collagen tension in normal and degenerate cartilage.
        Nature. 1976; 260: 808-809
        • Kim DK
        • Ceckler TL
        • Hascall VC
        • Calabro A
        • Balaban RS
        Analysis of water-macromolecule proton magnetization transfer in articular cartilage.
        Magn Reson Med. 1993; 29: 211-215
        • Seo GS
        • Aoki J
        • Moriya H
        • Karakida O
        • Sone S
        • Hidaka H
        • et al.
        Hyaline cartilage: in vivo and in vitro assessment with magnetization transfer imaging.
        Radiology. 1996; 201: 525-530
        • Regatte RR
        • Akella SV
        • Reddy R
        Depth-dependent proton magnetization transfer in articular cartilage.
        J Magn Reson Imaging. 2005; 22: 318-323
        • Yao L
        • Gentili A
        • Thomas A
        Incidental magnetization transfer contrast in fast spin-echo imaging of cartilage.
        J Magn Reson Imaging. 1996; 6: 180-184
        • Bruno MA
        • Mosher TJ
        • Gold G
        Arthritis in color.
        Saunders, 2009
        • Mosher TJ
        • Pruett SW
        Magnetic resonance imaging of superficial cartilage lesions: role of contrast in lesion detection.
        J Magn Reson Imaging. 1999; 10: 178-182
        • Mosher TJ
        • Goodwin DW
        Hidden beneath the surface: recognizing patterns and mechanisms of cartilage injury on knee MRI.
        American Roentgen Ray Society, Vancouver, BC2012
        • Maroudas A
        • Ziv I
        • Weisman N
        • Venn M
        Studies of hydration and swelling pressure in normal and osteoarthritic cartilage.
        Biorheology. 1985; 22: 159-169
        • Borthakur A
        • Shapiro EM
        • Beers J
        • Kudchodkar S
        • Kneeland JB
        • Reddy R
        Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI.
        Osteoarthritis Cartilage. 2000; 8: 288-293
        • Regatte RR
        • Akella SV
        • Borthakur A
        • Kneeland JB
        • Reddy R
        Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage: comparison of T2 and T1rho.
        Acad Radiol. 2002; 9: 1388-1394
        • Regatte RR
        • Kaufman JH
        • Noyszewski EA
        • Reddy R
        Sodium and proton MR properties of cartilage during compression.
        J Magn Reson Imaging. 1999; 10: 961-967
        • Toffanin R
        • Mlynarik V
        • Russo S
        • Szomolanyi P
        • Piras A
        • Vittur F
        Proteoglycan depletion and magnetic resonance parameters of articular cartilage.
        Arch Biochem Biophys. 2001; 390: 235-242
        • Mlynarik V
        • Trattnig S
        • Huber M
        • Zembsch A
        • Imhof H
        The role of relaxation times in monitoring proteoglycan depletion in articular cartilage.
        J Magn Reson Imaging. 1999; 10: 497-502
        • Nieminen MT
        • Rieppo J
        • Toyras J
        • Hakumaki JM
        • Silvennoinen J
        • Hyttinen MM
        • et al.
        T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study.
        Magn Reson Med. 2001; 46: 487-493
        • Watrin A
        • Ruaud JP
        • Olivier PT
        • Guingamp NC
        • Gonord PD
        • Netter PA
        • et al.
        T2 mapping of rat patellar cartilage.
        Radiology. 2001; 219: 395-402
        • Yoshioka H
        • Stevens K
        • Genovese M
        • Dillingham MF
        • Lang P
        Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis.
        Radiology. 2004; 231: 31-38
        • Kijowski R
        • Stanton P
        • Fine J
        • De Smet A
        Subchondral bone marrow edema in patients with degeneration of the articular cartilage of the knee joint.
        Radiology. 2006; 238: 943-949
        • Key J
        Experimental arthritis: the changes in joints produced by creating defects in the articular cartilage.
        J Bone Joint Surg Am. 1931; 13: 725-739
        • Alparslan L
        • Winalski CS
        • Boutin RD
        • Minas T
        Postoperative magnetic resonance imaging of articular cartilage repair.
        Semin Musculoskelet Radiol. 2001; 5: 345-363
        • Brown WE
        • Potter HG
        • Marx RG
        • Wickiewicz TL
        • Warren RF
        Magnetic resonance imaging appearance of cartilage repair in the knee.
        Clin Orthop Relat Res. 2004; 422: 214-223
        • Mithoefer K
        • Williams RJ
        • Warren RF
        • Potter HG
        • Spock CR
        • Jones EC
        • et al.
        The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study.
        J Bone Joint Surg Am. 2005; 87: 1911-1920
        • Choi YS
        • Potter HG
        • Chun TJ
        MR imaging of cartilage repair in the knee and ankle.
        Radiographics. 2008; 28: 1043-1059