Dynamic T1 functional MRI examinations with use of blood pool contrast agent — an approach to optimization of the technique

Published:November 15, 2010DOI:


      The goal was to optimize dynamic T1 imaging for functional MRI (fMRI) examinations.
      For each of the 10 healthy subjects T1 3D gradient echo sequence (GRE) sequences were provided immediately after administration of blood pool contrast agent then every 2 h when subjects performed block finger tapings.
      Dynamic T1 fMRI is sensitive to detect cortical activations up to 6 h after BPCA administration. fMRI should be conducted within 2 h of CA administration, which is enough time for a typical fMRI experiment procedure.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Morton DW
        • Keogh B
        • Lim K
        • Maravilla KR
        Functional brain imaging using a long intravenous half-life gadolinium-based contrast agent.
        AJNR. 2006; 27: 1467-1471
        • Marota JJ
        • Ayata C
        • Moskowitz MA
        • Weisskoff RM
        • Rosen BR
        • Mandeville JB
        Investigation of the early response to rat forepaw stimulation.
        Magn Reson Med. 1999; 41: 247-252
        • Keilholz SD
        • Silva AC
        • Raman M
        • Merkle H
        • Koretsky AP
        BOLD and CBV weighted functional magnetic resonance imaging of the rat somatosensory system.
        Magn Reson Med. 2006; 55: 316-324
        • Ben Bashat D
        • Sivan I
        • Ziv M
        • Aizenstein O
        • Pianka P
        • Malach R
        • Graif M
        • Hendler T
        • Navon G
        T1-weighted functional imaging based on a contrast agent in presurgical mapping.
        J Magn Reson Imaging. 2008; 28: 1245-1250
        • Majos A
        • Bogorodzki P
        • Piatkowska-Janko E
        • Wolak T
        • Kurjata R
        • Stefańczyk L
        Functional imaging with MR T1 contrast: a feasibility study with blood-pool contrast agent.
        Eur Radiol. 2009; 19: 898-903
        • Mandeville B
        • Marota J
        • Kosovsky B
        • Keltner JR
        • Weissleder R
        • Rosen B
        • Weisskoff R
        Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation.
        Magn Reson Med. 1998; 39: 615-624
        • Reese T
        • Bjelke B
        • Porszasz R
        • Baumann D
        • Bochelen D
        • Sauter A
        • Rudin M.
        Regional brain activation by bicuculline visualized by functional magnetic resonance imaging. Time-resolved assessment of bicuculline-induced changes in local cerebral blood volume using an intravascular contrast agent.
        NMR Biomed. 2000; 13: 43-49
        • Buxton RB
        • Edelman RR
        • Rosen BR
        • Wismer GL
        • Brady TJ
        Contrast in rapid MR imaging: T1- and T2-weighted imaging.
        J Comput Assist Tomogr. 1987; 11: 7-16
        • Parmelee DJ
        • Walovitch RC
        • Ouellet HS
        • Lauffer RB
        Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging.
        Invest Radio. 1997; 32: 741-747
        • Rohrer M
        • Bauer H
        • Mintorovitch J
        • Requardt M
        • Weinmann HJ
        Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths.
        Invest Radiol. 2005; 40: 715-724
        • Giovagnoni A
        • Catalano C
        Application of blood-pool agents in visualization of peripheral vessels.
        Eur Radiol. 2007; 17: B18-B23
        • Caravan P
        • Parigi G
        • Chasse JM
        • Cloutier NJ
        • Ellison JJ
        • Lauffer RB
        • Luchinat C
        • McDermid SA
        • Spiller M
        • McMurry TJ
        Albumin binding, relaxivity, and water exchange kinetics of the diastereoisomers of MS-325, a gadolinium(III)-based magnetic resonance angiography contrast agent.
        Inorg Chem. 2007; 46: 6632-6639
        • Voyvodic JT
        • Petrella JR
        • Friedman AH
        fMRI activation mapping as a percentage of local excitation: consistent presurgical motor maps without threshold adjustment.
        J Magn Reson Imaging. 2009; 29: 751-759
        • Ramsey NF
        • Hoogduin H
        • Jansma JM
        Functional MRI experiments: acquisition, analysis and interpretation of data.
        Eur Neuropsychopharmacol. 2002; 12: 517-526
        • Roberts TP
        • Mikulis D
        Neuro MR: principles.
        J Magn Reson Imaging. 2007; 26: 823-837
        • Truong TK
        • Clymer BD
        • Chakeres DW
        • Schmalbrock P
        Three-dimensional numerical simulations of susceptibility-induced magnetic field inhomogeneities in the human head.
        Magn Reson Imaging. 2002; 20: 759-770
        • Frahm J
        • Merboldt KD
        • Hänicke W
        Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation.
        Magn Reson Med. 1988; 6: 474-480
        • Preibisch C
        • Haase A
        Functional MR imaging of the human brain using FLASH: influence of various imaging parameters.
        J Magn Reson. 1999; 140: 162-171
        • Duyn JH
        • Moonen CT
        • van Yperen GH
        • de Boer RW
        • Luyten PR
        Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5 T.
        NMR Biomed. 1994; 7: 83-88
        • Kim SG
        • Ogawa S
        Insights into new techniques for high resolution functional MRI.
        Curr Opin Neurobiol. 2002; 12: 607-615
        • Barbier EL
        • Lamalle L
        • Decorps M
        Methodology of brain perfusion imaging.
        J Magn Reson Imaging. 2001; 13: 496-520
        • Lee SP
        • Duong TQ
        • Yang G
        • Iadecola C
        • Kim SG
        Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI.
        Magn Reson Med. 2001; 45: 791-800