Advertisement

Functional bold MRI: advantages of the 3 T vs. the 1.5 T

  • Reyes García-Eulate
    Correspondence
    Corresponding author. Clínica Universidad de Navarra, Avenida Pio XII 36, Pamplona 31008, Spain. Tel.: +34 948255400; fax: +34 948 296500.
    Affiliations
    Department of Neuroradiology, Clínica Universidad de Navarra and Medical School, University of Navarra, Pamplona, Spain
    Search for articles by this author
  • David García-García
    Affiliations
    Neuroscience Division, Department of Neurology and Neurosurgery, Clínica Universidad de Navarra and Medical School, CIMA, University of Navarra, Pamplona, Spain

    Centro Investigación Biomedica en Red Enfermedades Neurodegenerativas (CIBERNED; Spanish Government), Madrid, Spain
    Search for articles by this author
  • Pablo D. Dominguez
    Affiliations
    Department of Neuroradiology, Clínica Universidad de Navarra and Medical School, University of Navarra, Pamplona, Spain
    Search for articles by this author
  • Jose J. Noguera
    Affiliations
    Department of Neuroradiology, Clínica Universidad de Navarra and Medical School, University of Navarra, Pamplona, Spain
    Search for articles by this author
  • Esther De Luis
    Affiliations
    Department of Neuroradiology, Clínica Universidad de Navarra and Medical School, University of Navarra, Pamplona, Spain
    Search for articles by this author
  • María C. Rodriguez-Oroz
    Affiliations
    Neuroscience Division, Department of Neurology and Neurosurgery, Clínica Universidad de Navarra and Medical School, CIMA, University of Navarra, Pamplona, Spain

    Centro Investigación Biomedica en Red Enfermedades Neurodegenerativas (CIBERNED; Spanish Government), Madrid, Spain
    Search for articles by this author
  • Jose L. Zubieta
    Affiliations
    Department of Neuroradiology, Clínica Universidad de Navarra and Medical School, University of Navarra, Pamplona, Spain
    Search for articles by this author

      Abstract

      We quantitatively evaluate the benefits of a higher field strength for functional brain MRI (fMRI) based on the blood oxygenation level-dependent contrast. The 3-T fMRI shows a higher sensitivity for the motor and somatosensory stimulation and more specific localization in the grey substance. The 3-T fMRI detects additional areas of activation with the motor paradigm.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Imaging
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ogawa S
        • Lee TM
        • Kay AR
        • Tank DW
        Brain magnetic resonance imaging with contrast dependent on blood oxygenation.
        Proc Natl Acad Sci U S A. 1990; 87: 9868-9872
        • Ogawa S
        • Tank DW
        • Menon RS
        • et al.
        Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.
        Proc Natl Acad Sci U S A. 1992; 89: 5951-5955
        • Sunaert S
        Presurgical planning for tumor resectioning.
        J Magn Reson Imaging. 2006; 23: 887-905
        • Frayne R
        • Goodyear BG
        • Dickhoff P
        • et al.
        Magnetic resonance imaging at 3.0 Tesla challenges and advantages in clinical neurological imaging.
        Invest Radiol. 2003; 38: 385-402
        • Voss HU
        • Zevin JD
        • McCadlliss BD
        • Functional MR
        Imaging at 3.0 Tesla versus 1.5 T: a practical review.
        Neuroimaging Clin N Am. 2006; 16: 285-297
        • Fisel CR
        • Ackerman JL
        • Garrido L
        • et al.
        MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology.
        Magn Reson Med. 1991; 17: 336-347
        • Gati JS
        • Menon RS
        • Ugurbil K
        • Rutt BK
        Experimental determination of the BOLD field strength dependence in vessels and tissue.
        Magn Reson Med. 1997; 38: 296-302
        • Meindl T
        • Born C
        • Britsch S
        • Reiser M
        • Schoenberg S
        Functional BOLD MRI: comparison of different field strengths in a motor task.
        Eur Radiol. 2008; 18: 1102-1113
        • Turner R
        • Jezzard P
        • Wen H
        • et al.
        Functional mapping of the human visual cortex at 4.0 and 1.5 tesla using deoxygenation contrast EPI.
        Magn Reson Med. 1993; 29: 277-279
        • Yang Y
        • Wen H
        • Mattay VS
        • Balaban RS
        • Frank JA
        • Duyn JH
        Comparison of 3D BOLD functional MRI with spiral acquisition at 1.5 and 4.0 T.
        Neuroimage. 1999; 9: 446-451
        • Tieleman A
        • Vandemaele P
        • Seurnick R
        • Deblaere K
        • Achten E
        Comparison between functional magnetic resonance imaging at 1.5 and 3 Tesla: effect of increased field strength on 4 paradigms used during presurgical work-up.
        Invest Radiol. 2007; 42: 130-138
        • Hoenig K
        • Kuhl CK
        • Scheef L
        Functional 3.0-T MR assessment of higher cognitive function: are there advantages over 1.5-T imaging?.
        Radiology. 2005; 234: 860-868
        • Fera F
        • Yongbi MN
        • van Gelderen P
        • Frank JA
        • Mattay VS
        • Duyn JH
        EPI-BOLD fMRI of human motor cortex at 1.5 T and 3.0 T: sensitivity dependence on echo time and acquisition bandwidth.
        J Magn Reson Imaging. 2004; 19: 19-26
        • Krasnow B
        • Tamm L
        • Greicius MD
        • et al.
        Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing.
        NeuroImage. 2003; 18: 813-826
        • Krüger G
        • Kastrup A
        • Glover GH
        Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging.
        Magn Reson Med. 2001; 45: 595-604
        • Henson R
        • Büchel C
        • Josephs O
        • Friston K
        The slice-timing problem in event-related fMRI (abstr).
        NeuroImage. 1999; 6: S125
        • Josephs O
        • Henson R
        Event-related functional magnetic resonance imaging: modelling, inference and optimization.
        Philos Trans R Soc Lond B Biol Sci. 1999; 354: 1215-1228
        • Friston KJ
        • Ashburner J
        • Frith CD
        • Poline JB
        • Heather JD
        • Frackowiak RS
        Spatial registration and normalization of images.
        Hum Brain Mapp. 1995; 3: 165-189
        • Friston KJ
        • Holmes AP
        • Worsley KJ
        • Poline JP
        • Frith CD
        • Frackowiak RS
        Statistical parametric maps in functional imaging: a general linear approach.
        Hum Brain Mapp. 1995; 2: 189-210
        • Talairach J
        • Tournoux P
        Coplanar stereotaxic atlas of the human brain..
        Thieme, New York (NY)1988